
__ SOFTWARE ENGINEERING LABORATORY SERIES SEL-81-305

w

=1

Recommended Approach to
Software Development

Revision 3

JUNE 1992

National Aeronautics and

Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

,ll _ ,1_1 II ,.All II ,, ,llq ,,111 i , I _ _ J ii!l J !i:IlWII 11 I FI ill _llllil JI IIFll ,ills'' I_ a_ I

¢-

FOREWORD

v-

The Software Engineering Laboratory (SEL) is an organization sponsored by the

National Aeronautics and Space Administratiort/Goddard Space Flight Center

(NASA/GSFC) and created to investigate the effectiveness of software engineering

technologies when applied to the development of applications software. The SEL was

created in 1976 and has three primary organizational members:

NASA/GSFC, Software Engineering Branch

University of Maryland, Department of Computer Science

Computer Sciences Corporation, Software Engineering Operation

The goals of the SEL are (1) to understand the software development process in the GSFC

environment; (2) to measure the effects of various methodologies, tools, and models on

this process; and (3) to identify and then to apply successful development practices. The

activities, findings, and recommendations of the SEL are recorded in the Software

Engineering Laboratory Series, a continuing series of reports that includes this document.

The previous version of the Recommended Approach to Software Development was

published in April 1983. This new edition contains, updated material and constitutes a

major revision to the 1983 version. The following are primary contributors to the current

edition:

Linda Landis, Computer Sciences Corporation

Sharon Waligora, Computer Sciences Corporation

Frank McGarry, Goddard Space Flight Center

Rose Pajerski, Goddard Space Flight Center

Mike Stark, Goddard Space Flight Center

Kevin Orlin Johnson, Computer Sciences Corporation

Donna Cover, Computer Sciences Corporation

Single copies of this document can be obtained by writing to

Software Engineering Branch

Code 552

Goddard Space Flight Center

Greenbelt, Maryland 20771

iii

_.11 r-'"p_c_'_'o_N_3 P_GE E_.A,_!K NOT FILMED

ACKNOWLEDGMENTS

In preparation for the publication of this document and the Manager's Handbook for

Software Development, teams of technical managers from NASA/GSFC and Computer

Sciences Corporation (CSC) met weekly for many months to resolve issues related to flight

dynamics software development. It was through their efforts, experience, and ideas that

this edition was made possible.

NASA/GSFC Team Members

Sally Godfrey
Scott Green

Charlie Newman

Rose Pajerski
Mike Stark

Jon Valett

CSC Team Members

Linda Esker

Jean Liu

Bailey Spence

Sharon Waligora
Linda Landis

h
Ilt

ql

i

ql

i

F

ut

u_

iv

q

lm

wl

II

 Crl"

This document presents guidelines for an organized, disciplined approach to software

development that is based on studies conducted by the Software Engineering Laboratory

(SEL) since 1976. It describes methods and practices for each phase of a software

development life cycle that starts with requirements definition and ends with acceptance

testing. For each defined life cycle phase, this document presents guidelines for the

development process and its management, and for the products produced and their reviews.

This document is a major revision of SEL-81-205.

w
I"

1-

NOTE: The material presented in this document is consistent with major NASA/GSFC standards.

V

\

IlI

Ii

z

11

I

E

I

i

p_

NOTE: The names of some commercially available products cited in this document may be copyrighted or
registered as trademarks. No citation in excess of fair use, express or implied, is made in this document
and none should be construed.

vi

|
!

v

CONTENTS

r

Section 1 m

Section 2-

Section 3

Section 4 w

Section 5

Section 6

Section 7 --

Section 8-

Section 9 --

Section 10-

Introduction .. 1

The Software Development Life Cycle ... 5

The Requirements Definition Phase .. 21

The Requirements Analysis Phase .. 41

The Preliminary Design Phase .. 63

The Detailed Design Phase ... 85

The Implementation Phase .. 107

The System Testing Phase .. 135

The Acceptance Testing Phase ... 161

Keys to Success .. 179

Acronyms ... 185

References .. 187

Standard Bibliography of SEL Literature ... 189

Index .. 201

Y

vii

Figure

LIST OF FIGURES

1-1 The SEL Software Engineering Environment

2-1 Activities by Percentage of Total Development Staff Effort
2-2 Reuse Activities Within the Life Cycle

2-3 Graph Showing in Which Life-Cycle Phases Each Measure
Is Collected

3-1 Generating the System and Operations Concept

3-2 Developing Requirements and Specifications
3-3 SOC Document Contents

3-4 Requirements and Specifications Document Contents
3-5 SCR Format

3-6 SCR Hardcopy Material Contents
3-7 SRR Format

3-8 SRR Hardcopy Material Contents

4-1 Analyzing Requirements
4-2 Timeline of Key Activities in the Requirements Analysis Phase

4-3 Effort Data Example - ERBS AGSS

4-4 Requirements Analysis Report Contents
4-5 SDMP Contents (2 parts)
4-6 SSR Format

4-7 SSR Hardcopy Material

5-1 Developing the Preliminary Design

5-2 Preliminary Design Phase Timeline
5-3 Extent of the Design Produced for FORTRAN Systems

During the Preliminary and Detailed Design Phases
5-4 Level of Detail Produced for Ada Systems During

Preliminary Design

5-5 Preliminary Design Report Contents
5-6 PDR Format

5-7 PDR Hardcopy Material
6-1 Generating the Detailed Design

6-2 Timeline of Key Activities in the Detailed Design Pha_

6-3 Checklist for a Unit Design Inspection

6-4 Example of the Impact of Requirements Changes
on Size Estimates - the UARS Attitude Ground

Support System
6-5 Detailed Design Document Contents
6-6 CDR Format

6-7 CDR Hardcopy Material

7-1 Implementing a Software Build
7-2 Phases of the Life Cycle Are Repeated for

Multiple Builds and Releases

Page

1
6

16

19
23

24

33

34
35

36
37

38

43
46

53

55

56
59

60

65
67

72

73

81
82

83

87

88

94

98
100

103

104
109

110

lira

D

i

I

,i

E

lit

.u

i

q

II

[

m

m

Vlll

tE

|
|

mE

i1¢

r

r

.¢

LIST OF FIGURES (cont.)

Figure

7-3 Timeline of Key Activities in the Implementation Phase

7-4 Sample Checklist for Code Inspection
7-5 Integration Testing Techniques

7-6 Development Profile Example

7-7 Example of CPU Usage - ERBS AGSS
7-8 Generalized Test Plan Format and Contents

7-9 BDR Format

7-10 BDR Materials

8-1 System Testing
8-2 Timeline of Key Activities in the System Testing Phase

8-3 Sample Software Failure Report Form

8-4 EUVEDSIM System Test Profile

8-5 SEL Discrepancy Status Model
8-6 User's Guide Contents

8-7 System Description Contents
8-8 ATRR Format

8-8 ATRR Materials

9-1 Acceptance Testing
9-2 Timeline of Key Activities in the Acceptance Testing Phase

9-3 Sample Error-Rate Profile, UARS AGSS
9-4 Software Development History Contents

Page

112
118

121

126

128

131
133

134

136

138
148

152

152
154

156

158
158

163

164
175

178

r

LIST OF TABLES

Table

2-1 Measures Recommended by the SEL

3-1 Objective Measures Collected During the Requirements Definition Phase
4-1 Objective Measures Collected During the Requirements Analysis Phase

5-1 Objective Measures Collected During the Preliminary Design Phase

6-1 Objective Measures Collected During the Detailed Design Phase
7-1 Objective Measures Collected During the Implementation Phase

8-1 Objective Measures Collected During the System Testing Phase

9-1 Objective Measures Collected During the Acceptance Testing Phase

Page

18

31
51

78

97

125
151

174

1
=,

ix

x

.......Jll IflllililllAll Iliiiill ,. RIll III'...,RIll _Ailal I iiilllli iillJl_I; INII.....AllPlllVlll.i:81111mil Jill 111rg.,_lmlll|1i,, llimil $ i litlli il +rl, I_'

Section 1 - Introduction,

SECTION 1

INTRODUCTION

This document presents a set of guidelines that constitute a disciplined approach to software

development. It is intended primarily for managers of software development efforts and
for the technical personnel (software engineers, analysts, and programmers) who are

responsible for implementing the recommended procedures. This document is neither a

manual on applying the technologies described here nor a tutorial on monitoring a govern-
ment contract. Instead, it describes the methodologies and tools that the Software

Engineering Laboratory (SEL) recommends for use in each life cycle phase to produce

manageable, reliable, cost-effective software.

#
F

THE FUGHT DYNAMICS ENVIRONMENT

The guidelines included here are those that have proved effective in the experiences of the

SEL (Reference 1). The SEL monitors and studies software developed in support of flight

dynamics applications at the National Aeronautics and Space Administration/Goddard

Space Flight Center (NASA/GSFC). Since its formation in 1976, the SEL has collected
data from more than 100 software development projects. Typical projects range in size

from approximately 35,000 to 300,000 delivered source lines of code (SLOC) and require

from 3 to 60 staff-years to produce.

Flight dynamics software is developed in two distinct computing environments: the Flight

Dynamics Facility (FDF) and the Systems Technology Laboratory (STL). (See Figure
1-1.) Mission support software is engineered and operated in the mainframe environment
of the FDF. This software is used in orbit determination, orbit adjustment, attitude deter-

mination, maneuver planning, and general mission analysis. Advanced concepts for flight

dynamics are developed and studied in the STL. Software systems produced in this facility
include simulators, systems requiring special architectures (e.g., embedded systems), flight

FLIGHT DYNAMICr_S

SYSTEMS DEVELOPMENT

FLIGHT DYNAMICS I SYSTEMS TECHNOLOGY
I LABORATORY

FACILITY I

• MISSION SUPPORT _...___._ • ADVANCED SYSTEMS

SO--ARE I FUTURE_1 NEEDS J. RESEARCHAND

• DEVELOPMENT AND _ DEVELOPMENT

MAINTENANCE OF _ cDHVAgLCOEgYI

OPERATIONAL SYSTEMS • NEW TOOLS, METHODS,
LANGUAGES

• MISSION ANALYSIS AND
OPERATIONS • EXTENSIVE TOOLSETS

• STABLE/UNCHANGING_ FOR DEVELOPMENT

HARDWARE J PROVEN I" SEL DATABASE

_,_HNOLOGY]
--i

Figure 1-1. The SEL Software Engineering Environment

1

.TCfi'D:'_3 P_:.iE .;_!__,'IK NOT FILMED

Section 1-1ntroducdon

dynamics utilities, and projects supporting advanced system studies.
The STL also hosts the SEL database and the entire set of SEL

research tools.

This revised edition of the Recommended Approach to Software

Development reflects the evolution in life cycle, development
methodology, and tools that has taken place in these environments in

recent years. During this time, Ada and object-oriented design

(OOD) methodologies have been introduced and used successfully.
The potential for reuse of requirements, architectures, software, and

documentation has been, and continues to be, studied and exploited.

Ongoing studies also include experiments with the Cleanroom

methodology (References 2 through 4), formal inspection, and
computer-aided software engineering (CASE) tools.

Because the SEL's focus is process improvement, it is a catalyst for

this evolution. The SEL continuously conducts experiments using

the actual, production environment. The lessons learned from these

experiments are routinely fed back into an evolving set of standards
and practices that includes the Recommended Approach.

As these studies are confined to flight dynamics applications,

readers of this document axe cautioned that the guidance presented

here may not always be appropriate for environments with

significantly different characteristics.

DOCUMENT OVERVIEW

This document comprises 10 sections. Sections 3 through 9 parallel
the phases of the software development life cycle through acceptance

testing, and discuss the key activities, products, reviews,

methodologies, tools, and metrics of each phase.

Section 1 presents the purpose, organization, and intended
audience for the document.

Section 2 provides an overview Of the software development

life cycle. The general goals of any software development effort

are discussed, as is the necessity of tailoring the life cycle to adjust

to projects of varying size and complexity.

Section 3 provides guidelines for the requirements definition

phase. Generation of the system and operations concept and the

requirements and specifications documents are covered. The

purpose and format of the system concept and requirements reviews
are outlined.

2

qi

=.

It

i

J

I

m
¶

!

i

|

m

i_
I

!

p-

Section 1 - Introduction

_r

Section 4 discusses the key activities and products of the

requirements analysis phase: requirements classifications,
walk-throughs, functional or object-oriented analysis, the

requirements analysis report, and the software specifications review.

Section 5 presents the recommended approach to preliminary

design. The activities, products, and methodologies covered
include structured and object-oriented design, reuse analysis, design

walk-throughs, generation of prolog and program design language,
the preliminary design report, and the preliminary design review.

Section 6 provides comparable material for the detailed design

phase. Additional topics include the build test plan, completion of

prototyping activities, the critical design review, and the detailed

design document.

Section 7 contains guidelines for implementation of the

designed software system. Coding, code reading, unit testing, and

integration are among the activities discussed. The system test plan

and user's guide are summarized.

Section 8 addresses system testing, including test plans, testing

methodologies, and regression testing. Also covered are preparation

of the system description document and finalization of the

acceptance test plan.

Section 9 discusses the products and activities of the acceptance

testing phase: preparing tests, executing tests, evaluating results,

and resolving discrepancies.

Section 10 itemizes key DOs and DON'Ts for project success.

Recent SEL papers on software
maintenance include
"Measurement Based

Improvement of Maintenance in
the SEL," end "Towards Full

I;fe Cycle Control," both by
Rombach, Ulery, and Valett.
See References 5 and 6.

A list of acronyms, references, a

bibliography of SEL literature, and an
index conclude this document.

Although the maintenance and
operation phase is beyond the scope of
the current document, efforts are now

underway in the SEL to study this important
part of the life cycle. The results of these
studies will be incorporated into a future
edition.

...... AIIIIIIIIII_ III H ,.11Iliilll,aiM IIIA I IIIIIII ,AIlidlrIIIJllllll! I AI III I/I ,. , .,ililll Ill ,, JlillllIlllll Ill llllllllll ,nlllli !lib ,4Ill11III I ,i I I!fl _ _Hii_l 11 III rl A4 ill tl_' j

Section 2 - Life Cycle

m,, SECTION 2

THE SOFTWARE DEVELOPMENT LIFE CYCLE

The flight dynamics software development process is modeled as a series of

eight sequential phases, collectively referred to as the software development

life cycle:

[1. Reguirements Definition II

I I

4. Detailed Desi_m I -"",_

I s. Implementation I

I 6. System Testin_ I

I 8. Maintenance & O_eration II

r

Each phase of the software development life cycle is characterized by

specific activities and the products produced by those activities.

As shown in Figure 2-1, these eight phases divide the software life cycle

into consecutive time periods that do not overlap. However, the activities

characteristic of one phase may be performed in other phases. Figure 2-1

graphs the spread of activities throughout the development life cycle of

typical flight dynamics systems. The figure shows, for example, that
although most of the work in analyzing requirements occurs during the

requirements analysis phase, some of that activity continues at lower levels

in later phases as requirements evolve.

PRECEDING PA:'_E ;"' _"'_:_-;-_,_K NOT F:i.MED

Section 2 - Ufe Cycle

t=

_: • ACCEPTANCE

i
REQUIREMENT8 • 0ETAILEDe IMPLEMENTATION PHASE

DE_ON
PHASE _u : DESIGN •

PHASE •

PREUBNARY

DESIGN PHASE

REQUIREMENTS CALENDAR 17ME

NdALYSl6 PHASE

TEST

PHASE

• ACCEPTANCE • MAINTE]IANCE AND

• TEST PHASE • OPERATION PHASE

Example: At the end of the Implementation phase (Sth dashed llne), approximately 46% of the staff are involved in system testing;

approximately 15% are preparing for acceptance testing; approximately 7% ere addreul ng requirements changes or problems;

approximately 12% are designing modifications; and approximately 20% are coding, code reading, unit testing, end Integrating

changes. Data ere shown only for the phases of the software life cycle for which the SEL has a representative sample.

i

q

i

q

!

=.

mm

w(

Figure 2-1. Activities by Percentage of Total Development Staff Effort

PHASES OF THE UFE CYCLE

The eight phases of the software development life cycle are defined in the following
paragraphs.

Requirements Definition

Requirements definition is the process by which the needs of the customer are translated
into a clear, detailed specification of what the system must do. For flight dynamics

applications, the requirements definition phase begins as soon as the mission task is
established. A team of analysts studies the available information about the mission and
develops an operations concept. This includes a timeline for mission events, required
attitude maneuvers, the types of computational processes involved, and specific operational
scenarios. The functions that the system must perform are defined down to the level of a

subsystem (e.g., a telemetry processor).

6

E
m

|
=

!

m_

m

J..
!

i
I

I

_=

Section 2 - Life Cycle

!

=

,..(,,on
In this document, the term analyst refers

to those specialists in flight dynamics
(astronomers, mathematicians, physicists,

and engineers) who determine the detailed

requirements of the system and perform

acceptance tests. For these activities,

analysts work in teams (e.g., the

requirements definition team) and function

%as agents for the end users of the system.j

Working with experienced developers, analysts
identify any previously developed software that can

be reused on the current project. The advantages
and disadvantages of incorporating the existing

components are weighed, and an overall

architectural concept is negotiated. The results of

these analyses are recorded in the system and
operations concept (SOC) document and assessed in

the system concept review (SCR).

NOTE)

In each phase of the life

cycle, certain milestones
must be reached in order to

declare the phase complete.
Because the life cycle is

sequential, these exit criteria are also the
entry criteria for the following phase. In

this document, entry and exit criteria are

shown in the summary tables on the first

page of Sections 3 through 9. A brief

discussion of the phase's exit criteria is

_, provided at the conclusion of each sectionj

Guided by the SOC, a requirements definition team

derives a set of system-level requirements from

documents provided by the mission project office.
A draft version of the requirements is then recast in

terms suitable for software design. These

specifications define what data will flow into the

system, what data will flow out, and what steps
must be taken to transform input to output.

Supporting mathematical information is included,
and the completed requirements and specifications

document is published. The conclusion of this
phase is marked by the system requirements review

(SRR), during which the requirements and

specifications for the system are evaluated.

Requirements Analysis

The requirements analysis phase begins after the SRR. In this

phase, the development team analyzes the requirements and
specifications document for completeness and feasibility. The

development team uses structured or object-oriented analysis and a

requirements classification methodology to clarify and amplify the
document. Developers work closely with the requirements

definition team to resolve ambiguities, discrepancies, and to-be-

determined (TBD) requirements or specifications.

The theme of reuse plays a prominent role throughout the

requirements analysis and design phases. Special emphasis is

placed on identifying potentially reusable architectures, designs,
code, and approaches. (An overview of reuse in the life cycle is

presented later in this section.)

When requirements analysis is complete, the development team
prepares a summary requirements analysis report as a basis for

preliminary design. The phase is concluded with a software

specifications review (SSR), during which the development team

Section 2 - Life Cycle
ii

presents the results of their analysis for evaluation. The

requirements definition team then updates the requirements and

specifications document to incorporate any necessary modifications.

Preliminary Design

The baselined requirements and specifications form a contract
between the requirements definition team and the development team

and are the starting point for preliminary design. During this phase,
members of the development team define the software architecture

that will meet the system specifications. They organize the

requirements into major subsystems and select an optimum design

from among possible alternatives. All internal and external
interfaces are defined to the subsystem level, and the designs of

high-level functions/objects are specified.

The development team documents the high-level design of the

system in the preliminary design report. The preliminary design

phase culminates in the preliminary design review (PDR), where the
development team formally presents the design for evaluation.

Detailed Design

During the detailed design phase, the development team extends the
software architecture defined in preliminary design down to the unit

level. By successive refinement techniques, they elaborate the

preliminary design to produce "code-to" specifications for the

software. All formalisms for the design are produced, including the
following:

• Functional or object-oriented design diagrams
• Descriptions of all user input, system output (for example,

screen, printer, and plotter), and input/output files

• Operational procedures
• Functional and procedural

descriptions of each unit
• Descriptions of all internal interfaces

among units

The development team documents these

design specifications in the detailed design
document that forms the basis for

implementation. At the critical design review
(CDR), which concludes this phase, the

detailed design is examined to determine

whether levels of detail and completeness are

sufficient for coding to begin.

.(DEFINITIONS

Throughout this document, the term

unit is used to designate any set of
program statements that are logically

treated as a whole. A main program, a
subroutine, or a subprogram may each
be termed a unit. A moduleis •

collection of logically related units.

Component is used in its English

language sense to denote any

constituent part. •

q

i

q

U

!
m

!

z

Section 2 - Life Cycle

me

=

Implementation

In the implementation (code, unit testing, and integration) phase, the
developers code new components from the design specifications and

revise existing components to meet new requirements. They

integrate each component into the growing system, and perform unit

and integration testing to ensure that newly added capabilities

function correctly.

In a typical project, developers build several subsystems
simultaneously from individual components. The team repeatedly

tests each subsystem as new components are coded and integrated

into the evolving software. At intervals, they combine subsystem

capabilities into a complete working system for testing end-to-end
processing capabilities. The sequence in which components are

coded and integrated into executable subsystems and the process of

combining these subsystems into systems are defined in an

implementation plan that is prepared by development managers

during the detailed design phase.

The team also produces a system test plan and a draft of the user's
guide in preparation for the system testing phase that follows.

Implementation is considered complete when all code for the system
has been subjected to peer review, tested, and integrated into the

system.

System Testing

During the system testing phase, the development team validates the

completely integrated system by testing end-to-end capabilities

according to the system test plan. The system test plan is based on

the requirements and specifications document. Successfully

completing the tests specified in the test plan demonstrates that the
system satisfies the requirements.

In this phase, the developers correct any errors uncovered by system
tests. They also refine the draft user's guide and produce an initial
system description document. System testing is complete when all

tests specified in the system test plan have been run successfully.

Acceptance Testing

In the acceptance testing phase, the system is tested by an

independent acceptance test team to ensure that the software meets
all requirements. Testing by an independent team (one that does not

have the developers' preconceptions about the functioning of the

system) provides assurance that the system satisfies the intent of the

9

Section 2 - Life Cycle

original requirements. The acceptance test team usually consists of

analysts who will use the system and members of the requirements
definition team.

The tests to be executed are specified in the acceptance test plan
prepared by the acceptance test team before this phase. The plan is

based on the contents of the requirements and specifications

document and approved specification modifications.

During acceptance testing, the development team assists the test team

and may execute acceptance tests under its direction. Any errors

uncovered by the tests are corrected by the development team.

Acceptance testing is considered complete when the tests specified in
the acceptance test plan have been run successfully and the system
has been formally accepted. The development team then delivers

final versions of the software and the system documentation (user's

guide and system description) to the customer.

Maintenance and Operation

At the end of acceptance teSting, the system becomes the

responsibility of a maintenance and operation group. The activities

conducted during the maintenance and operation phase are highly

dependent on the type of software involved. For most flight
dynamics software, this phase typically lasts the lifetime of a

spacecraft and involves relatively few changes to the software. For
tools and general mission support software, however, this phase

may be much longer and more active as the software is modified to

respond to changes in the requirements and environment.

The maintenance and operation phase is not

specifically addressed in this document.
However, because enhancements and error

corrections also proceed through a

development life cycle, the recommended

approach described here is, for the most
part, applicable to the maintenance and

operation phase. The number and

formality of reviews and the amount of
documentation produced during

maintenance and operation vary depending

on the size and complexity of the software
and the extent of the modifications.

NOTE "_

fl_ecent SEL studies have sh own that most TM

of the effort in initial maintenance of flight

dyilamics systems is spent in enhancing
the system after launch to satisfy new

requirements for long-term operational

support. Such enhancements are usually
effected without radically altering the

architecture of the system. Errors found

during the maintenance and operation

phase are generally the same type of faults

as are uncovered during development,

although they require more effort to repair.

B

i

Z

i

li

I1

E

|

.=

m

i

"t

10

----__

=_

!

p.

Section 2 - Life Cycle

.r

#-

e-

(

TAILORING THE URE CYCLE

One of the key characteristics that has shaped the SEL's

recommended approach to software development is the homo-

geneous nature of the problem domain in the flight dynamics
environment. Most software is designed either for attitude

determination and control for a specific mission, for mission-general

orbit determination and tracking, or for mission planning. These

projects progress through each life cycle phase sequentially,
generating the standard documents and undergoing the normal set of
reviews.

RULE

Certain projects, however, do not fit this mold.
Within the STL, experiments are conducted to

study and improve the development process.
"] Advanced tools are developed. For these

' development efforts -- prototypes, expert

systems, database tools, Cleanroom

experiments, etc. -- the life cycle and the
methodologies it incorporates often need

adjustment. Tailoring allows variation in the
level of detail and degree of formality of
documentation and reviews, which may be

,, modified, replaced, or combined in the tailoring

process. Such tailoring provides a more exact
match to unique project requirements and

development products at a lower overall cost to

the project without sacrificing quality.

The following paragraphs outline general guidelines for tailoring the
life cycle for projects of varying size and type. Additional

recommendations may be found throughout this document,

accompanying discussions of specific products, reviews, methods,
and tools.

The software development/

management plan (SDMP} must

describe how the life cycle will be

tailored for a specific project. See
Section 4 for more details.

Builds and Releases

The sizes of typical flight dynamics projects vary considerably.

Simulators range from approximately 30 thousand source lines of
code (KSLOC) to 160 KSLOC. Attitude ground support systems

for specific missions vary between 130 KSLOC and 300 KSLOC,

while large mission-general systems may exceed 1 million SLOC.

The larger the project, the greater the risk of schedule slips,
requirements changes, and acceptance problems. To reduce these

risks, the implementation phase is partitioned into increments
tailored to the size of the project.

11

Section 2 - Life Cycle

Flight dynamics projects with more than 10

KSLOC are implemented in builds. A build is a

portion of a system that satisfies, in part or
completely, an identifiable subset of the

specifications. Specifications met in one build
also are met in all successor builds. The last

build, therefore, is the complete system.

A release is a build that is delivered for

acceptance testing and subsequently released for
operational use. Projects of fewer than 300
KSLOC are usually delivered in a single release,
unless otherwise dictated by scheduling (e.g.,
launch) considerations or by TBD requirements.
Large projects (more than 300 KSLOC) are
generally delivered in multiple releases of 300 to
500 KSLOC each.

Builds within large projects may last up to 6
months. Builds within small projects may be
only 2 to 3 months in duration.

Reviews

(
f

NOTE

Reviews are recommended

for each build. The

suggested format and
contents of build design

reviews are provided in

Section 7.

J

Guidelines for tailoring the |

development approach (including /reviews, documentation, and testin g)

for projects of differing scope and
function ere provided throughout this
document. Look for the scissors

symbol in the margin.

tb

I

i

qE

J

i

!1

Reviews are conducted to ensure that analysts and developers
understand and fulfill customer needs. Because reviews are

designed to assist developers, not to burden them unnecessarily, the
number of reviews held may vary from project to project. For tools

development, the requirements, requirements analysis, and
preliminary design might be reviewed together at PDR. For small

projects spanning just several months, only two reviews may be

applicable -- the SRR and CDR. For very large projects, a CDR
could (and should) be held for each major release and/or subsystem

to cover all aspects of the system and to accommodate changing

requirements.

The criteria used to determine whether one or more reviews can be

combined depend on the development process and the life cycle

phase. In the requirements analysis phase, for example, answers to
the following questions would help determine the need for a separate
SSR:

• Are there outstanding analysis issues that need to be
reviewed?

• How much time will there be between the start of

requirements analysis and the beginning of design?
• How stable are the requirements and specifications?

I

i

m

I

Ii

m

I!

II

12

i

I
li

Section 2 - Life Cycle

On small projects, technical reviews can be no more formal than a
face-to-face meeting between the key personnel of the project and
the customer technical representative. On typical flight dynamics

projects, however, reviews are formalized and follow specific
formats. Guidelines for these reviews are provided in Sections 3

through 9.

Documentation

On small projects, technical documentation is less formal than on

medium or large projects, and fewer documents are published.
Documents that would normally be produced separately on larger

projects are combined. On a small research project, a single design
document may replace the preliminary design report, detailed design

document, and system description.

Testing and Verification

Independent testing is generally not performed on small-scale, tool-
development efforts. Test plans for such projects can be informal.

Although code reading is always performed on even the smallest

project, units are often tested in logically related groups rather than
individually, and inspections are usually conducted in informal, one-
on-one sessions.

Configuration Management and Quality Assurance

Configuration management encompasses all of the activities
concerned with controlling the contents of a software system. These

activities include monitoring the status of system components,

preserving the integrity of released and developing versions of a

system, and governing the effects of changes throughout the

system. Quality assurance activities ensure that software
development processes and products conform to established

technical requirements and quality standards.

All software and documentation that are developed for delivery are

generally subject to formal configuration management and quality
assurance controls. Tools developed exclusively for internal use are

exempt, unless the tool is required to generate, run, or test a
deliverable system.

On medium and small projects, configuration control may be

performed by a designated member of the development team -- a

practice that is strongly discouraged on a large project. Similarly,
the quality assurance function may be assigned to a team member

with other responsibilities or may be handled by the technical leader.

13

Sectlon 2 - Ufe Cycle

h

Prototyping

A prototype is an early experimental model of a system, system
component, or system function that contains enough capabilities for
it to be used to establish or refine requirements or to validate critical
design concepts. In the flight dynamics environment, prototypes are

used to (1) mitigate risks related to new technology (e.g.,.hardware,
language, design concep.ts) or (2) resolve requirements issues. In
the latter case, entire projects may be planned as prototyping efforts
that are designed to establish the requirements for a later system.

II

i

Unless the end product of the entire project is

a prototype, prototyping activities are usually

completed during the requirements analysis

and design phases. The prototyping activity
has its own, usually informal, life cycle that is

embedded within the early phases of the full

system's life cycle. If any portion of the
prototype is to become part of the final

system, it must be validated through all the

established checkpoints (design reviews, code
reading, unit testing and certification, etc.).
As a rule, such prototyping activities should

require no more than 15 percent of the total

development effort.

For projects in which the end product is a
prototype, however, an iterative life cycle may
be preferable. This is particularly true when a
new user interface is a significant component
of the system. An initial version of the
prototype is designed, implemented, and
demonstrated to the customer, who adds or

revises requirements accordingly. The
prototype is then expanded with additional
builds, and the cycle continues until

completion criteria are met.

ff RULE

All prototyping activities must be
planned and controlled. The plan
must define the purpose and scope of
the prototyping effort, and must
establish specific completion criteria.
See Section 4 for more details.

WHEN TO PROTOTYPE _

f/_s a rule of thumb, use prototyping -_
whenever
• the project involves new technology,

e.g., new hardware, development
language, or system architecture

• the requirements are not understood
• there are major, unresolved issues

concerning performance, reliability,
or feasibility

• the user interface is critical to system

_, success or is not clearly understood ,j

_%
I

i

I

i
|

i

m

i

IlL

Tailoring the life cycle for any type of prototyping requires careful

planning. The more new technology that is to be used on a project,
the greater the prototyping effort. The larger the prototyping effort,
the more formalized must be its planning, development, and

management. The results of even the smallest prototyping effort
must always be documented. Lessons learned from the prototype

are incorporated into Plans for subsequent phases and are included
in the project history. See Section 4 for additional guidance on

planning and documenting prototyping activities.

I

i

=

!

q

14

i

!
!

Section 2 - Life Cycle

w

l

REUSE THROUGHOUT THE UFE CYCLE

From the beginning to the end of the life cycle, the approach to
software development recommended by the SEL stresses the

principle of reuse. Broadly speaking, the reuse of existing

experience is a key ingredient to progress in any area. Without
reuse, everything must be relearned and re-created. In software

development, reuse eliminates having to "reinvent the wheel" in each

phase of the life cycle, reducing costs and improving both reliability

and productivity.

Planning for reuse maximizes these benefits by allowing the cost of

the learning curve in building the initial system to be amortized over

the span of follow-on projects. Planned reuse is a primary force
behind such recent technologies as object-oriented design and Ada.

KEY REUSE ELEMENTS

f" Analyze these key elements of a

project for possible reuse:

• requirements characteristics
• software architecture

• software development process
• design architecture or

concepts ,mBImBIL _

• test plane and procedures
• code ca• user documentation

• staff j

All experience and products of the software

development life cycle -- specifications, designs,
documentation, test plans, as well as code -- have

potential for reuse. In the flight dynamics

environment, particular benefits have been
obtained by reusing requirements and specifi-

cations (i.e., formats, key concepts, and high-

level functionality) and by designing for reuse (see

References 7 through 10).

Figure 2-2 shows how reuse activities fit into the

software development life cycle. The top half of

the figure contains activities that are conducted to
enable future reuse. The lower half shows

activities in which existing software is used in the

system under development. These activities are
outlined in the following paragraphs.

Activities That Enable Future Reuse

domain

analysis

requirements

generalization

Domain analysis is the examination of the application domain of the

development organization to identify common requirements and

functions. It is usually performed during the requirements definition

and analysis phases, but it may also be conducted as a separate
activity unconnected to a particular development effort. Domain

analysis produces a standard, general architecture or model that

incorporates the common functions of a specific application area and
can be tailored to accommodate differences between individual

projects. It enables requirements generalization, i.e., the
preparation of requirements and specifications in such a way that

they cover a selected "family" of projects or missions.

15

Section 2 - Ufe Cycle

l

Enabling

Reusing

SRR SSR PDR CDR ATRR

S VERBATIM REUSE

DESIGN PHASE
REQUIREMENTS

ANALYSIS PHASE

REUSE

PRESERVA_ON

TIME

MAINTENANCE

AND OPERATION

PHASE

ACCEPTANCE

TESTING PHASE

!

m

i

=
q

=_
a

m

m
II

Figure 2-2. Reuse Activities Within the Life Cycle
m

!1

Software not originally intended for reuse is more difficult to

incorporate into a new system than software explicitly designed for
reuse. Designing for reuse provides modularity, standard inter-

faces, and parameterization. Design methods that promote

reusability are described in References 9 and 11.

Reuse libraries hold reusable source code and associated

requirements, specifications, design documentation, and test data.

In addition to storing the code and related products, the library

contains a search facility that provides multiple ways of accessing
the software (e.g., by keyword or name). On projects where reuse

has been a design driver, extraction of candidate software for
inclusion in the reuse library takes place after system testing is

complete.

Reuse on Current Projects

During the requirements definition and analysis phases, reuse

analysis is performed to determine which major segments

(subsystems) of existing software can be used in the system to be

developed. In the design phases, developers verify this analysis by

examining each reusable element individually. During the
preliminary design phase, developers evaluate major components to

determine whether they can be reused verbatim or must be modified;
individual units from the reuse library are examined during the

detailed design phase.

16

designing
for reuse

reuse
libraries

reuse

analysis
and
verification

=
i

Q

m
[]
ii

tl

i

I

|

i

|

Section 2 - Life Cycle

m

Software may be reused verbatim or may be modified to fit the

needs of the current project. During the implementation phase,

developers integrate existing, unchanged units into the developing

system by linking directly to the reuse library. Modified software,
on the other hand, must be subjected to peer review and unit testing

before being integrated.

reuse

preservation

A final reuse activity takes place during the maintenance and

operation phase of the life cycle. Through the changes that it

implements, the maintenance team can positively or negatively affect
the reusability of the system; "quick fixes", for example, may

complicate future reuse. Reuse preservation techniques for

maintenance use many of the same practices that promote reuse

during the analysis, design, and implementation phases.

MEASURES

Measures of project progress and viability are key to the effective

management of any software development effort. In each phase of

the life cycle, there are certain critical metrics that a manager must
examine to evaluate the progress, stability, and quality of the

development project.

)

Sections 3 through 9 of
this document provide
detailed information
about the objective
measures used in each
phase. Lookfor the
MEASURES heading and
symbol.

Both objective and subjective data are
measured. Objective data are actual counts of

items (e.g., staff hours, SLOC, errors) that can

be independently verified. Subjective data are

dependent on an individual's or group's

assessment of a condition (e.g., the level of

difficulty of a problem or the clarity of
requirements). Together, these data serve as a

system of checks and balances. Subjective data
provide critical information for interpreting or

validating objective data, while objective data

provide definitive counts that may cause the
manager to question his or her subjective

understanding and to investigate further.

Objective measures can be further classified into two groups: those
that measure progress or status and those that measure project

quality (e.g., stability, completeness, or reliability). Progress
measures, such as the number of units coded or the number of tests

passed, are evaluated against calculations of the total number of
items to be completed. Quality measures, on the other hand, are

17

Section 2 - Ufe Cycle

Table 2-1. Measures Recommended by the SEL

MEASURES
CLASS

ESTIMATES

RESOURCES

STATUS

ERRORS/

CHANGES

FINAL
CLOSE-OUT

MEASURE

Estimates of:

• Total SLOC
(new, modified,

reused)

• Total units
• Total effort

• Major dates

• Staff hours

(total & by activity)

• Computer use

• Requirements

(growth, TBDs,

changes, Q&As)

• Units designed,
coded, tested

• SLOC (cumulative)

• Tests (complete,
passed)

• Errors (by
• category)

• Changes (by

category)
• Changes (to source)

Actuals at completion:
• Effort

• Size (SLOC,
units)

• Source

characteristics

• Major dates

SOURCE

Managers

Developers

Automated
tool

Managers

Developers

Automated
Developers

Developers

Developers

Automated

Managers

FREQUENCY

Monthly

Weekly

Weekly

Biweekly

Biweekly

Weekly
Biweekly

By event

By event

Weekly

1 time, at

completion

MAJOR APPLICATION

• Project stability
• Planning aid

• Project stability

• Replanning indicator

• Effectiveness/impact of the
development process
being applied

• Project progress
• Adherence to defined

process
• Stability and quality of

requirements

• Effectiveness/impact of the
development process

• Adherence to defined

process

• Build predictive models

• Plan/manage new projects

only useful if the manager has access to models or metrics that represent what should be

expected.

In the SEL, measurement data from current and past projects are stored in a project
histories database. Using information extracted from such a database, managers can gauge
whether measurement trends in the current project differ from the expected models for the

development environment. (See Section 6 of Reference 12.)

The management measures recommended by the SEL are listed in Table 2-1. Figure 2-3
shows in which phases of the life cycle each of these measures is collected.

As Table 2-1 shows, developers are responsible for providing many of the measures that
are collected. In the SEL, developers use various data collection forms for this purpose.
The individual forms are discussed in the sections of this document covering the life-cycle

phases to which they apply.

i

=

I

=
II

.=E

_=
!!

!1

i

-__=

rl

!

m

E

i

Q

m

18
i

I1

Section 2 - Life Cycle

ESlrlMA11E9

RESOURCES

STATUS

ERRORS/

CHANGE8

CLOSE OUT

Size/efforQdates

[_o_._0+_,.i.<\\\\\\\\\\\\\\N

REOUI_IE ME N'I_
OEFINIllON .Eoo. I,.E .I IMENT5 NARY DESIGN

ANALYSIS DESIGN

SVSllEM
IMPLEMENTATION "_S'RNG

_Effort
KSize

_Source characteristics

_ a_jo____,__,........

ACC_ PTANCE I MAJNI'_NANCE ANO1"_;T1 _ OPERATION

Figure 2-3. Graph Showing in Which Life-Cycle Phases Each Measure Is Collected

EXPERIMENTATION

Measurement is not only essential to the management of a software

development effort; it is also critical to software process
improvement. In the SEL, process improvement is a way of life.

Experiments are continually being conducted to investigate new
software engineering technologies, practices, and tools in an effort

to build higher-quality systems and improve the local production
process. The SEL's ongoing measurement program provides the
baseline data and models of the existing development environment

against which data from experimental projects are compared.

For several years, the SEL has been conducting experiments and
measuring the impact of the application of the Cleanroom

methodology (References 2, 3, and 4), which was developed in the
early 1980s by Harlan Mills. The goal of the Cleanroom

methodology is to build a software product correctly the first time.
Cleanroom stresses disciplined "reading" techniques that use the

human intellect to verify software products; testing is conducted for

the purpose of quality assessment rather than as a method for

detecting and repairing errors.

The Cleanroom methodology is still in the early stages of evaluation

by the SEL. Although some of the methods of Cleanroom are the
same as existing methods in the SEL's recommended approach --

e.g., code reading _ other aspects remain experimental.

19

Section 2 - Life Cycle

Consequently, the Cleanroom methodology is used throughout this
document as an example of the integral aspect of experimentation

and process improvement to the SEL's recommended approach.
Variations in life cycle processes, methods, and tools resulting from

the application of Cleanroom will be highlighted. Look for the

experimentation symbol.

The term Cleanroomwes

borrowed from integrated circuit

production. It refers to the
dust-free environments in which

the circuits are assembled.

!1

R

i

ij

Ii

E
=

i

|

i

II

II

20

z

!1

E

iF

m

I
l
_.j

q

Section 3 - Requirements Definition

UFE
CYCLE
IR4ASES DEFINITION _l_'!_i _ DE_ _ iii!!i!!i! !_iiiiii!!i!!i_!!_! iiii!iiii!ii!iii!iii!!!! i_i!!_i!!!_i_iii_iiiiiiiI_.-_-s_l................'_I............., I..._.I ...I....................................

SECTION 3

THE REQUIREMENTS DEFINITION PHASE

PHASE HIGHLIGHTS

ENTRY CRITERIA

• Problem/project description completed
• Project approved

EXIT CRITERIA

• System and operations concept completed

• SRR completed
• Requirements and specifications baselined

PRODUCTS

• System and operations concept document
• Requirements and specifications

document

MEASURES

• Staff hours

• Number of requirements defined
vs. estimated total requirements

• Percentage of requirements with
completed specifications

METHODS AND TOOLS

• Structured or object-oriented analysis
• Walk-throughs
• Prototyping

KEY ACTIVITIES

Requirements Definition Team
• Develop a system concept
• Prepare the reuse proposal
• Develop an operations concept
• Define the detailed requirements
• Derive the specifications
• Conduct the SCR and SRR

Management Team
• Develop a plan for the phase
• Staff and train the requirements

definition team
• Interact with the customer

• Evaluate progress and products
• Control major reviews

Section3 - RequirementsDefinition

OVERVIEW

The purpose of the requirements definition phase is to produce a
clear, complete, consistent, and testable specification of the technical

requirements for the software product.

Requirements definition initiates the software development life

cycle. During this phase, the requirements definition team uses an
iterative process to expand a broad statement of the system

requirements into a complete and detailed specification of each
function that the software must perform and each criterion that it

must meet. The finished requirements and specifications, combined

with the system and operadons concept, describe the software

product in sufficient detail so that independent software developers
can build the required system correctly.

The starting point is usually a set of high-level requirements from
the customer that describe the project or problem. For mission

support systems, these requirements are extracted from project

documentation such as the system instrumentation requirements
document (SIRD) and the system operations requirements document

(SORE)). For internal tools, high-level requirements are often

simply a list of the capabilities that the tool is to provide.

In either case, the requirements definition team formulates an overall

concept for the system by examining the high-level requirements for
similarities to previous missions or systems, identifying existing

software that can be reused, and developing a preliminary system
architecture. The team then defines scenarios showing how the

system will be operated, publishes the system and operations
concept document, and conducts a system concept review (SCR).

(See Figure 3-1.)

I

i

i

11

i
i

!

i

l

Following the SCR, the team
derives detailed requirements

for the system from the high-
level requirements and the

system and operations concept.

Using structured or object-
oriented analysis, the team

specifies the software functions

and algorithms needed to satisfy

each detailed requirement.

22

_NOTE (cont.)

,..(NOTE "_ ,

In the flight dynamics
environment, 1_f_ W_NG 7_
membership in // "_.._//_
the teams that [_Qt_ME__so_rr_N_.._Z.__/_
perform the _ OERNmON,_v_M'_,_J
technical activi-_ '_- _.//v_//_
ties of software _.____...___
development overlap_ _-T_ j
The overlap ensures _ _A_

,that experienced... _ j

analysts from the
requirements
definition team plan
acceptance tests,
and that developers
assist in defining
requirements,
planning for reuse,
and supporting
acceptance testing, j

aR

IE

m

IF

IE

L

II

Section 3 - Requirements Definition

p-

PROJECT OR PROBLEM

DESCRIPTION

R EQUI RF.M E/TIr_

UST _ ITEMIZED HIGH-LEVEL

f y FUNC110. TO _ R EQ_'IIR EM ENTS

• • REQUIREMF.NI_

lpr _ M_Lev,,s*,_
l ARCHITECTURE SYSTEM ANO OPERA110NS

ENGINEERINO _ CONCEPT DOCUMENT

| REUSE _ HIGH-LEVEL SYSTEM J

f (REFINED) /

RIDS AND

RESPONSES
CONOUCT

REVIEW

3.4

NOTE: In this figure, as In all data flow diagrams (DFDs) in this documenL rectangles denote external entities,
circles represent processes, and parallel lines are used for data stores (in this case, documents). The processes
labelled 3.1, 3.2, and 3.3 are described in the KEY ACTIVITIES subsection below. The SCR is described under
REVIEWS and the system and operations concept document is covered in PRODUCTS.

Figure 3-1. Generating the System and Operations Concept

When the specifications are complete, the requirements definition team publishes the
requirements and specifications document in three parts: (1) the detailed requirements, (2)

the functional or object-oriented specifications, and (3) any necessary mathematical

background information. At the end of the phase, the team conducts a system requirements
review (SRR) to demonstrate the completeness and quality of these products. (See Figure

3-2.)

23

Section 3 - Requirements Definition

i

U

$YSTrM AND OPERATIONS

CONCEPT DOCUMENT

PROJECT OR PROilLEM

O_r,l) REQ_R_E_frs

SPECIFICATIONS

TRACEABIIJTY
MATN

0EVELOP

SPECIFICATION

3.7

REOUIR EM F.NI_ AND SPECIRCATIONS

SPECIRCATIONS DOCUMENT

INFORMATION FRC_4

PREVIOU$ PROJ EC'i_

INTERFACE CONTROIL OOCUMENT$

MATH BACKGROUND

NOTE: The processes labelled 3.5, 3.6. and 3.7 are discussed in the KEY ACTIVITIES subsection. The requirements and

specifications document is described under the heading PRODUCTS. The REVIEWS subsection covers the SRR.

I IBI

Figure 3-2. Developing Requirements and Specifications

E

I

Z

11

|

I

I

I

B

i

=

24
L

Z
I

Section 3 - Requirements Definition

KEY ACTIVmES

The key technical and managerial activities of the requirements
definition phase are itemized below.

Activities of the Requirements Definition Team

Develop a system concept. Collect and itemize all high-level

requirements for the system. Describe the basic functions that

the system must perform to satisfy these high-level
requirements. Address issues such as system lifetime (usage
timelines), performance, security, reliability, safety, and data
volume.

From this functional description, generate an ideal, high-level

system architecture identifying software programs and all major
interfaces. Allocate each high-level requirement to software,

hardware, or a person. Specify the form (file, display, printout)

of all major data interfaces.

TAILORING NOTE

'r'wml On smell projects that are

I UI:J developingtoolsor
I i.,i prototypes, requirements

I "/A\" definition end analysis are

I 'IA\I often combined into a single
I i phase. On such projects,

[developers generally perform

[ell requirements definition

L activities. J

Although use of existing software can

reduce effort mgnificently, some

compromises may be necessary. Ensure
that all tradeoffe are well understood.

Avoid these two pitfalls:
• Failing to make reasonable compromises,

thus wasting effort for marginal

improvement in quality or functionality

• Making ill-advised compromises that

save development effort at the cost of
sJgnificently degrading functionality or

performance ,

Prepare the reuse proposal. Review the

requirements and specifications, system
descriptions, user's guides, and source code of
related, existing systems to identify candidates for

reuse. For flight dynamics mission support

systems, this involves reviewing support systems

for similar spacecraft. Select strong candidates
and estimate the corresponding cost and reliability

benefits. Determine what compromises are

necessary to reuse software and analyze the
tradeoffs.

Adjust the high-level architecture to account for
reuseable software. Record the results of all reuse

analysis in a reuse proposal that will be included

in the system and operations concept document.

Develop an operations concept. This clearly

defines how the system must operate within its
environment. Include operational scenarios for all

major modes of operation (e.g., emergency versus
normal). Be sure to include the end-user in this

process. Conduct an SCR.

25

Section 3 - Re,cjuirements Definition

Define the detailed
requirements. Based on

the high-level requirements
and the system concept and
architecture, define all

software requirements down
to the subsystem level. If

the system is large (with

many subsystems) or if it
will interface with other

systems, explicitly define all
external interfaces.

f(. NOTE

m
(_ NOTE

See the PRODUCTS

subsection below for

detailed contents of the

system and operations
concept as well as the

requirements and

functional specifications
documents.

-%

The SCR and SRR

• are covered in /detail in the

REVIEWS
subsection.

Determine system performance and reliability requirements. If

certain acceptance criteria apply to a requirement (e.g., meeting a

particular response time), specify the test criteria with the
requirement. Identify all intermediate products needed to

acceptance test the system.

Derive the functional specifications for the system from the

requirements. Identify the primary input and output data needed
to satisfy the requirements. Use structured or object-oriented

analysis to derive the low-level functions and algorithms the
software must perform. Define all reports and displays and

indicate which data the user must be able to modify.

Keep the specifications design-neutral and language-neutral; i.e.,
concentrate on what the software needs to do, rather than how it

will do it. Create a traceability matrix to map each low-level

function or data specification to the requirements it fulfills.

Ensure that all requirements and

specifications are given a thorough peer

review. Watch for interface problems

among major functions and for

specifications that are duplicated in

multiple subsystems. Ensure
compatibility and consistency in

notation and level of accuracy among

the specified algorithms.

Prepare the requirements and

specifications document, including any

necessary mathematical background
information, as a basis for beginning

software development.

fr o. o
Cr_lml On very large or complex projects, _

I U | m] it is generally advisable to hold a

I ,.:,n preliminary system requirements

I I/&\ll review (PSRR) as soon as a draft o(

I I/A_ the requirements document is
] mma complete. This allows end-users

| and key developers to raise critical

| issues before requirements are

| finalized. See the REVIEWS

| subsection for additional

_,, information on the PSRR. ,,

I

i

I!

!

m¢

!

im

l¢

i

26

II

s

Section 3 - Requirements Definition

Conduct the SRR and incorporate approved changes into the

requirements and specifications. Place the document under

configuration management as the system baseline.

Activities of the Management Team

The management activities performed during this phase pave the

way for all future phases of the project's life cycle. Specifically,

managers must accomplish the following:

Develop a plan for the phase. (Detailed planning of the entire

development effort is deferred to the requirements analysis

phase, after system specifications have been defined.) Address

the staffing of the teams that will perform the technical work, the
groups and individuals that will interface with the teams, the

technical approach, milestones and schedules, risk management,

and quality assurance. List the reviews to be conducted and
their level of formality.

Staff and train the requirements definition team. Ensure that

the team contains the necessary mix of skills and experience for
the task. For mission support systems, the team should include

analysts with strong backgrounds in mission analysis, attitude
and orbit determination, and operations. The reuse working

group must include key software developers as well as

experienced analysts. Ensure that staff members have the
necessary training in the procedures, methods, and tools needed

to accomplish their goals.

CDERNITION "_

t_he key developers who participate in

reuse analysis and other requirements
definition activities have special technical

roles throughout the life cycle. The value

of these application specialists lies in their

specific knowledge and experience. On

mission support projects, for example, the

application specialist will not only have
developed such software previously, but
also will understand the complex mathe-

matics and physics of flight dynamics. The

application specialist often acts as a
'_transiator," facilitating communications

between analysts and developers.

Interact with the customer to assure

visibility and resolution of all issues.
Conduct regular status meetings and ensure

communications among team members,

managers, customers, and other groups

working on aspects of the project.

Evaluate progress and products. Review

the system and operations concept and the

requirements and specifications. Collect

progress measures and monitor adherence
to schedules and cost.

Control major reviews. Ensure that key

personnel are present at reviews, both
formal and informal. Participate in the
SCR and SRR.

27

Section 3 - Requirements Definition

METHODS AND TOOLS

The methods and tools used during the requirements definition

phase are

• Structured or object-oriented analysis

• Walk-throughs

• Prototyping

Each is discussed below.

Analysis Methodologies

Structured analysis and object-oriented analysis are techniques used
to understand and articulate the implications of the textual statements
found in the requirements definition. The requirements definition
team uses analysis techniques to derive the detailed specifications for
the system from the higher-level requirements. The analysis
methodology selected for the project should be appropriate to the
type of problem the system addresses.

Functional decomposition is currently the most commonly used
method of structured analysis. Functional decomposition focuses

on processes, each of which represents a set of transformations of
input to output. Using this method, the analyst separates the
primary system function into successively more detailed levels of
processes and defines the data flows between these processes.
Authors associated with structured analysis include E. Yourdon,
L. Constantine, and T. DeMarco (References 13 and 14). S.
Mellor and P. Ward have published a set of real-time extensions to
this method for event-response analysis (Reference 15).

Object-oriented analysis combines techniques from the realm of data

engineering with a process orientation. This method defines the

objects (or entities) and attributes of the real-world problem domain
and their interrelationships. The concept of an object provides a

means of focusing on the persistent aspect of entities -- an emphasis
different from that of structured analysis. An object-oriented

approach is appropriate for software designed for reuse becauge

specific objects can be readily extracted and replaced to adapt the
system for other tasks (e.g., a different spacecraft). Details of the
object-oriented approach may be found in References 11, 16, and
17.

In structured analysis, functions are grouped together if they are
steps in the execution of a higher-level function. In object-oriented
analysis, functions are grouped together if they operate on the same
data abstraction. Because of this difference, proceeding from
functional specifications to an object-oriented design may necessitate

structured

analysis

object-
oriented

analysis

I

i

l

!1

,=

|

m

Ill

L--

i

28

i

!

I!

I

Section 3 - Requirements Definition

CASE tools can greatly increase

productivity, but they can only aid or

improve those activities that the
teem or individual knows how to

perform manually. CASE tools
cannot improve analysis, qualify

designs or code, etc., if the user does
not have have a clear definition of the

manual process involved.

recasting the data flow diagrams. This is a
significant amount of effort that can be avoided
by assuming an object-oriented viewpoint
during the requirements definition phase.

The diagramming capabilities of CASE tools

facilitate application of the chosen analysis
methodology. The tools provide a means of

producing and maintaining the necessary data

flow and object-diagrams online. They usually
include a centralized repository for storing and

retrieving definitions of data, processes, and
entities. Advanced tools may allow the

specifications themselves to be maintained in
the repository, making it easier to trace the

requirements to design elements.

Selected tools should be capable of printing the diagrams in a form

that can be directly integrated into specifications and other

documents. Examples of CASE tools currently used in the flight
dynamics environment include System Architect and Software

Through Pictures.

Walk-throughs

In all phases of the life cycle, peer review ensures the quality and
consistency of the products being generated. The SEL recommends

two types of peer review -- walk-throughs and inspections -- in
addition to formal reviews such as the SRR and CDR.

walk-throughs Walk-throughs are primarily conducted as an aid to understanding,

so participants are encouraged to analyze and question the material
under discussion. Review materials are distributed to participants

prior to the meeting. During the meeting, the walk-through leader
gives a brief, tutorial overview of the product, then walks the

reviewers through the materials step-by-step. An informal

atmosphere and a free interchange of questions and answers among

participants fosters the learning process.

inspections Inspections, on the other hand, are designed to uncover errors as

early as possible and to ensure a high-quality product. The
inspection team is a small group of peers who are technically

competent and familiar with the application, language, and standards
used on the project. The products to be reviewed (e.g.,

requirements, design diagrams, or source code) are given to the

inspection team several clays before the meeting. Inspectors
examine these materials closely, noting all errors or deviations from

29

Section 3 - Requirements Definition

standards, and they come to the review meeting prepared to itemize

and discuss any problems.

In both walk-throughs and inspections, a designated team rfiember

records the minutes of the review session, including issues raised,

action items assigned, and completion schedules. Closure of these

items is addressed in subsequent meetings.

In the requirements definition phase, walk-throughs of the

requirements and specifications are conducted to ensure that key

interested parties provide input while requirements are in a formative
stage. Participants include the members of the requirements

definition team, representatives of systems that will interface with

the software to be developed, and application specialists from the

development team.

Prototyping

During the requirements definition phase, prototyping may be

needed to help resolve requirements issues. For mission support
systems, analysts use prototyping tools such as MathCAD to test the

mathematical algorithms that will be included in the specifications.

For performance requirements, platform-specific performance
models or measurement/monitoring tools may be used.

MEASURES

Objective Measures

Three progress measures are tracked during the requirements

definition phase:

• Staff hours -- i.e., the cumulative effort hours of the project
staff

• Number of requirements with completed specifications versus

the total number of requirements

• Number of requirements defined versus the total number of

estimated requirements

The sources of these data and the frequency with which the data are

collected and analyzed are shown in Table 3-1.

=

i

=

II

m

|

le

3O

IE

Section 3 - Requirements Definition

Table 3-1. Objective Measures Collected During the

Requirements DefTnition Phase

MEASURE

Staff hours (total and
by activity)

Requirements status
(percentageof
completed
specifications;number
of requirementsdefined)

Estimatesof total
requirements, total
requirements definition
effort, and schedule

SOURCE

Requirements
definition team and
managers
(time accounting)

Managers

Managers

FREQUENCY
(COLLECT/ANALYZE_

Weekly/monthly

Biweekly/biweekly

Monthly/monthly

staff hours

completed

specifications

defined

requirements

Evaluation Criteria

Effort should be gauged against estimates based on historical data

from past projects of a similar nature. Monitor staff hours

separately for each major activity. If schedules are being met but
hours are lower than expected, the team may not be working at the

level of detail necessary to raise problems and issues.

To judge progress following the SCR, track the number of

requirements for which specifications have been written as a

percentage of the total number of requirements. ("Total require-
ments" includes those for which a need has been identified, but for

which details are still TBD.)

Monitor requirements growth by tracking the number of

requirements that have been defined against an estimated total for the

project. If requirements stability is an issue, consider tracking the

number of changes made to requirements as well. Excessive growth

or change to specifications point to a need for greater management
control or to the lack of a detailed system operations concept.

- 31

Section 3 - Requirements Definition

PRODUCTS

The key products of the requirements definition phase are the system
and operations concept (SOC) document and the requirements and

specifications document. The content and form of these products
are addressed in the following paragraphs.

System and Operations Concept Document

The SOC document lists the high-level requirements, defines the

overall system architecture and its operational environment, and

describes how the system will operate within this environment. The

document provides a base from which developers can create the
software structure and user interface. The format recommended for

the document is shown in Figure 3-3.

The SOC is not usually updated after publication. During the

requirements analysis phase, developers refine the reuse proposal
contained in the document and publish the resulting reuse plan in the

requirements analysis report. Similarly, developers refine the

operational scenarios and include them in the requirements analysis,

preliminary design, and detailed design reports. Because these and

other pieces of the SOC are reworked and included in subsequent

development products, it may not be necessary to baseline or
maintain the SOC itself.

Requirements and Specifications Document

This document is produced by the requirements definition team as

the key product of the requirements definition phase. It is often

published in multiple volumes: volume 1 defines the requirements,
volume 2 contains the functional specifications, and volume 3

provides mathematical specifications. The document is distributed

prior to the SRR, updated following the review to incorporate

approved review items, and then baselined.

The requirements and specifications document contains a complete

list Of all requirements -- including low-level, derived requirements
w and provides the criteria against which the software system will

be acceptance tested. The functional or object specifications, which

identify the input data, output data, and processing required to

transform input to output for each process, provide the basis for
detailed design and system testing. The document also includes the

mathematical background information necessary to evaluate

specified algorithms and to design the system correctly.

32

I

,!

z

i

Section 3 - Requirements Definition

The recommended outline for the requirements and specifications document is presented in

Figure 3-4.

SYSTEM AND OPERATIONS CONCEPT DOCUMENT

This document provides a top-down view of the system from the user's perspective by describing
the behavior of the system in terms of operational methods and scenarios. Analysts should
provide the document to the development team by the end of the requirements definition phase.
The suggested contents are as follows:

1. Introduction
a. Purpose and background of the system
b. Document organization

2. System overview
a. Overall system concept
b. System overview with high-level diagrams showing external interfaces and data flow
c. Discussion and diagrams showing an ideal, high-level architecture for the system

3. Reuse proposal
a. Summary of domain and reuse analysis performed
b. Description of potential candidates for reuse -- architectural components,

designs, operational processes, and test approaches -- and associated trade-offs
c. Discussion and diagrams of the proposed high-level architecture, as adjusted to

incorporate reusable elements

4. Operational environment -- description and high-level diagrams of the environment in

which the system will be operated
a. Overview of operating scenarios
b. Description and high-level diagrams of the system configuration (hardware and software)
c. Description of the responsibilities of the operations personnel

5. Operational modes
a. Discussion of the system's modes of operation (e.g., critical versus normal and

launch/early mission versus on-orbit operations)
b. Volume and frequency of data to be processed in each mode
c. Order, frequency, and type (e.g., batch or interactive) of operations in each mode

6. Operational description of each major function or object in the system
a. Description and high-level diagrams of each major operational scenario showing all input,

output, and critical control sequences
b. Description of the input data, including the format and limitations of the input. Sample

screens (i.e., displays, menus, popup windows) depicting the state of the function
before receiving the input data should also be included.

c. Process m high-level description of how this function will work
d. Description of the output data, including the format and limitations of the output.

Samples (i.e., displays, reports, screens, plots) showing the results after processing
the input should also be included.

e. Description of status and prompt messages needed during processing, including
guidelines for user responses to any critical messages

7. Requirements traceability matrix mapping each operational scenario to requirements

Figure 3-3. SOC Document Contents

- 33

Section 3 - Requirements Definition

REQUIREMENTS AND SPECIFICATIONS DOCUMENT

This document, which contains a complete description of the requirements for the software
system, is the primary product of the requirements definition phase. In the flight dynamics
environment, it is usually published in three volumes: volume 1 lists the requirements, volume 2
contains the functional specifications, and volume 3 provides the mathematical specifications.

o Introduction
a. Purpose and background of the project
b. Document organization

2. Symm overview
a. Overall system concept
b. Expected operational environment (hardware, peripherals, etc.)
c. High-level diagrams of the system showing the external interfaces and data flows
d. Overview of high-level requirements

3. Requirements -- functional, operational (interface, resource, performance, reliability, safety,
security), and data requirements
a. Numbered list of high-level requirements with their respective derived requirements

(derived requirements are not explicitly called out in source documents such as the SIRD
or SORD, but represent constraints, limitations, or implications that must be satisfied to
achieve the explicitly stated requirements)

b. For each requirement:
(1) Requirement number and name
(2.) Description of the requirement
(3) Reference source for the requirement, distinguishing derived from explicit

requirements
(4) Interfaces to other major functions or external entities
(5) Performance specifications -- frequency, response time, accuracy, etc.

4. Specifications
a. Discussion and diagrams showing the functional or object hierarchy of the system
b. Description and data flow/object diagrams of the basic processes in each major

subsystem
c. Description of general conventions used (mathematical symbols, units of measure, etc.)
d. Description of each basic function/object, e.g.:

(1) Function number and name
(2) Input
(3) Process -- detailed description of what the function should do
(4) Output
(5) Identification of candidate reusable software

(6) Acceptance criteria for verifying satisfaction of related requirements
(7) Data dictionary -- indicating name of item, definition, structural composition of the

item, item range, item type

5. Mapping of specifications to requirements -- also distinguishes project-unique
requirements from standard requirements for the project type (AGSS, dynamics
simulator, etc.)

6. Mathematical specifications --formulas and algorithm descriptions to be used in
implementing the computational functions of the system
a. Overview of each major algorithm
b. Detailed formulas for each major algorithm

z_

i

m

II

Z
i=

|

z

:=

i
=

i

=m

Figure 3-4. Requirements and Specifications Document Contents

34

w

Section 3 - Requirements Definition

REVIEWS

Two key reviews are conducted during the requirements definition

phase: the system concept review and the system requirements

review. The purpose, participants, scheduling, content, and format
of these reviews are discussed in the subsections that follow.

System Concept Review

The SCR gives users, customer representatives, and other interested

parties an opportunity to examine and influence the proposed system

architecture and operations concept before detailed requirements are
written. It is held during the requirements definition phase after

system and operations concepts have been defined. In the flight

dynamics environment, a full SCR is conducted for large, mission

support systems. For smaller development efforts without complex
external interfaces, SCR material is presented informally. The SCR

format is given in Figure 3-5.

SCR FORMAT

Presenter= -- requirements definition team

Participants
• Customer representatives
• User representatives
• Representatives of systems and groups that will interface with the

system to be developed
• Senior development team representatives (application specialists)
• Quality assurance (QA) representatives
• System capacity/performance analysts

Schedule -- after the system and operations document is complete
and before requirements definition begins

Agenda _ summary of high-level requirements (e.g., from SIRD and
SORD) and presentation of system and operations concepts;
interactive participation and discussion should be encouraged.

Materials Distribution

• The system and operations concept document is distributed 1 to 2
weeks before the SCR.

• Hardcopy material is distributed a minimum of 3 days before SCR.

Figure 3-5. SCR Format

SCR Hardcopy Material

The hardcopy materials distributed for use at the review should

correspond to the presentation viewgraphs. A suggested outline for

the contents of SCR hardcopy material is presented in Figure 3-6.

" 35

SeclJon 3 - Requirements Definition

HARDCOPY MATERIAL FOR THE SCR

1. Agenda m outline of review material

2. Introduction -- purpose of system and background of the project

3. High-level requirements
a. Derivation of high-level requirements -- identification of input (such as the SIRD and

SORD) from project office, support organization, and system engineering organization
b, Summary of high-level requirements

4.

5.

6.

7.

Sy=tem concept
a. Assumptions
b. Overall system concept
c. List of major system capabilities

Reuse considerations
a. Existing systems reviewed for possible reuse
b. Reuse trade-offs analyzed
c. Proposed reuse candidates

High-level system architecture
a. Description and high-level diagrams of the proposed system architecture (hardware and

software), including external interfaces and data flow
b. Diagrams showing the high-level functions of the system -- their hierarchy and

interaction

System environment
a. Computers and peripherals
b. Communications
c. Operating system limitations and other constraints

8. Operations concept
a. Assumptions
b. Organizations that provide system and support input and receive system output
c. System modes of operation (e.g., critical versus normal and launch versus on-orbit

operations)
d. Order, frequency, and type (e.g., batch or interactive) of operations in each mode
e. Discussion and high-level diagrams of major operational scenarios
f. Performance implications

9, Issues, TBD items, and problems -- outstanding issues and TBDs and a course of action to
handle them

m

!

i

i
qn

i
U

I

i

m

=.

Figure 3-6. SCR Hardcopy Material Contents

System Requirements Review (SRR)

When the requirements and specifications document is distributed, the requirements
definition team conducts an SRR to present the requirements, obtain feedback, and facilitate

resolution of outstanding issues. The SRR format, schedule, and participants are given in

Figure 3-7.

36

m

Section 3 - Requirements Definition

SRR FORMAT

Presenters -- requirements definition team

Participant=
• Customer representatives
• User representatives
• Configuration Control Board (CCB)
• Senior development team representatives
• System capacity/performance analysts
• Quality assurance representatives

Schedule -- after requirements definition is complete and before the
requirements analysis phase begins

Agenda -- selective presentation of system requirements,
highlighting operations concepts and critical issues (e.g., TBD
requirements)

Materials Distribution
• The requirements and specifications document is distributed 1 to 2

weeks before SRR.
• Hardcopy material is distributed a minimum of 3 days before SRR.

Figure 3-7. SRR Format

'_LORING NOTE "_

(_'r_lil_ Forvery large or complex
I i_I_1 project=, hold • preliminary $RR
I IIi_l to obtain interim feedback from
II/i\l usersandcustomers. The
IUll format of the PSRRis the same
I _ as the SRR, Hardcopymaterial
| contains preliminary results and
| is adjusted to reflect work

L,, accomplishedto date.
/

SRR Hardcopy Material

Much of the hardcopy material for the review
can be extracted from the requirements and

specifications document. An outline and

suggested contents of the SRR hardcopy
material are presented in Figure 3-8.

The Configuration Control Board (CCB)is
a NASA/'GSFC committee that reviews,

controls, and approves FDD systems,

internal interfaces, and system changes.

Among its duties are the approval of

system baseline reviews (e.g., SRR, PDR)
and baseline documents (e.g., require-

ments and specifications, detailed design
document).

J

37

Section 3 - Requirements Definition

==

HARDCOPY MATERIAL FOR THE SRR

1. Agenda -- outline of review material

2. Introduction -- purpose of system and background of the project

3. Requirements summary -- review of top-level (basic) requirements developed to form
the specifications
a. Background of requirements -- overview of project characteristics and major events
b. Derivation of requirements -- identification of input from project office, support

organization, and system engineering organization used to formulate the requirements:
e.g., the SIRD, SORD, memoranda of information (MOIs), and memoranda of
understanding (MOUs)

c. Relationship of requirements to level of support provided -- typical support, critical
support, and special or contingency support

d. Organizations that provide system and support input and receive system output
e. Data availability -- frequency, volume, and format
f. Facilities -- target computing hardware and environment characteristics

g. Requirements for computer storage, failure/recovery, operator interaction, diagnostic
output, security, reliability, and safety

h. Requirements for support and test software -- data simulators, test programs, and
utilities

i. Overview of the requirements and specifications document -- its evolution,
including draft dates and reviews and outline of contents

4. Interface requirements -- summary of human, special-purpose hardware, and
automated system interfaces, including references to interface agreement documents
(lADs) and interface control documents (ICDs)

5. Performance requirements -- system processing speed, system response time, system
failure recovery time, and output data availability

6. Environmental considerations --special computing capabilities, e.g., graphics,
operating system limitations, computer facility operating procedures and policies, support
software limitations, database constraints, and resource limitations

7. Derived system requirements -- list of those requirements not explicitly called out in
the SIRD, SORD, MOIs, and MOUs, but representing constraints, limitations, or
implications that must be satisfied to achieve the explicitly stated requirements

8. Operation== concepts
a. High-level diagrams of operating scenarios showing intended system behavior from the

user's viewpoint

b. Sample input screens and menus; sample output displays, reports, and plots; critical
control sequences

9. Requirements management approach

a. Description of controlled documents, including scheduled updates
b. Specifications/requirements change-control procedures
c, System enhancement/maintenance procedures

10. Personnel organization and interfaces

11. Milestones and suggested development schedule

12, Issues, TBD items, and problems-- a characterization of all outstanding requirements
issues and TBDs, an assessment of their risks (including the effect on progress), and a
course of action to manage them, including required effort, schedule, and cost

Figure 3-8. SRR Hardcopy Material Contents

m

E

i

=

m_

ir

w

=

m

i

38

L

M

Section 3 - Requirements Definition,

EXIT cRrrERtA

Following the SRR, the requirements definition team analyzes all
RIDs, determines whether requirements changes are necessary, and

revises the requirements and specifications document accordingly.

The updated document is sent to the configuration control board
(CCB) for approval. Once approved, it becomes a controlled

document m the requirements baseline.

Use the following questions to determine whether the requirements
and specifications are ready to be given to the development team for

analysis:

Do specifications exist for all
information is available? Have

minimized?

requirements for which

TBD requirements been

• Have external interfaces been adequately defined?

• Are the specifications consistent in notation, terminology, and

level of functionality, and are the algorithms compatible?

• Are the requirements testable?

Have key exit criteria been met? That is, has the requirements
and specifications document been distributed, has the SRR been

successfully completed, and have all SRR RIDs been answered?

When the answer to these questions is "yes," the requirements

definition phase is complete.

_.(NOTE

During end following formal reviews,
review item disposition forms (RIDs)
ere submitted by participants to
identify issues requiring a written
response or further action. Managers
are responsible for ensuring that all
RiDs are logged and answered and
resulting action items are assigned and
completed.

39

+..

i.++
I+

lI!!I!!q!r" IP_ _!.... !I_+' I _' I!trll_ IT_ , lit+' I _I l'Inl! r,_ l! _ ,i!.......... ,_l m ,,!lhm+mtlr..... ,_llIWtII!I++Ii'_! Jill+ ml II '_ ,_'' ' ,_

w

Section 4 - Requirements Analysis

MIRE
CYCLE
PI.IASE_!

r

iii _:;::<i_:::_:_1_tNI_I_N.:::;Ji_! REM_NTsURE-I_:::::::;::iMJ-_yI iz_:::T_:'!i_ESl_I !I ii_ii_;iii::;i;_::;!_i:.'.:;_::_::ii;i_i::i::':::i::::i::ii::i_m_,_I
.............::::::::::::::::::::::::::::::::: S ;D_IGN ;!!!: :::::::_i!:: !i!_i!_ii;_ii_ii;:i_i::;:_::!i_i_!_i_i_i:!:i:_:!:!:!_i_!!!!!!!!_!::i!i_::_::_::!::_::_i!::;::i::iii!i!!!_: : i_ii_;_i_ii_:]:::I........ II: .._.... I...I

SECTION 4

THE REQUIREMENTS ANALYSIS PHASE

PHASE HIE

ENTRY CRITERIA

• System and operations concept completed
• SRR completed
• Requirements and specifications baselined

EXIT CRITERIA

• Requirements analysis rep.ort completed
• Software specification review (SSR)

completed
• SSR RIDs resolved

PRODUCTS KEY ACTIVITIES

• Requirements analysis report
• Software development/management plan
• Updated requirements and specifications

MEASURES

• Staff hours
• TBD requirements
• Requirements questions/answers

• Requirements changes
• Estimates of system size, effort,

and schedule

Requirements Definition Team
• Resolve ambiguities, discrepancies,

and TBDs in the specifications
• Participate in the SSR

Development Team
• Analyze and classify requirements
• Refine the reuse proposal
• Identify technical risks
• Prepare the requirements analysis report
• Conduct the SSR

METHODS AND TOOLS

• Requirements walk-throughs *
• Requirements classification *
• Requirements forms
• Requirements analysis methods and

CASE tools

• Prototyping
• Project library

Management Team
• Prepare the software development]

management plan
• Staff and train the development team
• Interact with analysts and customers to

facilitate resolution of req uirements issues

• Review the products of the requirements

analysis process
• Plan the transition to preliminary design

41PRECEDi.r_G P'_3E _" ""' 'r _"

Section 4 - Requirements Analysis

OVERWL=W

The purpose of the requirements analysis phase is to ensure that the

requirements and specifications are feasible, complete, and
consistent, and that they are understood by the development team.

Requirements analysis begins after the

requirements definition team completes the
requirements and specifications and holds the
SRR. During requirements analysis, members of

the development team carefully study the

requirements and specifications document. They

itemize and categorize each statement in the
document to uncover omissions, contradictions,

TBDs, and specifications that need clarification or

amplification. The development team takes the

analysis that was performed in the requirements
definition phase to the next level of detail, using

the appropriate analysis methodology for the
project (e.g., structured or object-oriented

analysis). When analysis is complete, the team
presents its findings at an SSR.

.(TAILORING NOTE "_

On large projects, requirements
analysis begins at the PSRR.

Key members of the develop-
ment team examine the review

materials, participate in the

review itself, and begin

classifying requirements
shortly thereafter.

The development team works closely with the
requirements definition team during the entire

phase. The requirements definition team

participates in walk-throughs, answers questions,
resolves requirements issues, and attends the

SSR. Meanwhile, the project manager plans the

approaches to be used in developing the software

system and in managing the development effort,
obtains and trains the necessary staff, and reviews

the products produced during the phase.

Figure 4-1 is a high-level data flow diagram of the

requirements analysis process.

NOTE

fA typical development team comprises _

• the project manager, who manages

project resources, monitors progress,
and serves as a technical consultant

• the project (or task) leader, who

provides technical direction and daily
supervision

• the programmers and application

specialists who perform the technical
work

• a quality assurance representative
• a project librarian (see METHODS &

TOOLS)

%

b

qi

i[_

z

=

42

Section 4 - Requirements Analysis

F_

i

ASSESSMENT OF

TECHNICAL RISKS

OEVELOPMENT

PROJECT

SCHEDULE

PARAMETERS

BUDGETS

REOUIREM ENTS

ANALYSIS REPORT

RESPONSES

SOFTWARE

SPECIRCA_ON5

RENEW

; AND

SCHEDULE INFO

I
SOFTWARE DEVELOPMF.NTI

MANAGEMENT pLAN

NOTE: The methodologies used in the requirements classification e,nd analysis activities (processes 4,1 and 4.2 in
the above DFD) are described under METHODS AND TOOLS below. The requirements analysis report (Wocess 4.3)
is discussed under PRODUCTS, and a separate subsection is devoted to the SSR (process 4.4). The planning activity

(process 4.5) is outlined under MANAGEMENT ACTIVITIES and is described indetail in Section 3 of Reference 12.

Figure 4-1. Analyzing Requirements

43

Section 4 - Requirements Analysis

KEY ACTIVITIES

In the requirements analysis phase, activities are divided primarily

among the requirements definition team, the development team, and

software development managers. The key activities that each

performs during the requirements analysis phase are itemized in the
following subsections. Figure 4-2 is a sample timeline showing

how these activities are typically scheduled.

Activities of the Requirements Definition Team

Resolve ambiguities, discrepancies, and TBDs in the

specifications. Conduct the initial walk-throughs of the

requirements and specifications for the development team and

participate in later walk-throughs. Respond to all developer
questions.

Resolve the requirements issues raised by the development team.

Incorporate approved modifications into the requirements and
specifications document.

• Participate in the SSR.

Activities of the Development Team

Analyze and classify requirements. Meet

with the requirements definition team to

walk through and clarify each requirement

and specification. Identify requirements and

specifications that are missing, conflicting,

ambiguous, or infeasible. Assign a

classification of mandatory, requires
review, needs clarification, information
only, or TBD to each item in the

requirements and specifications document.

,_¢ NOTE

Use structured or object-oriented analysis to verify the
specifications. Expand the high-level diagrams in the

requirements and specifications document to a lower level of

detail, and supply missing diagrams so that all specifications are
represented at the same level. Ensure that user interactions and

major data stores (e.g., attitude history files) are completely

specified.

Determine the feasibility of computer capacity and performance

requirements in view of available resources. Establish initial

performance estimates by comparing specified

"/
See METHODS AND

TOOLS below for more

information about

walk-throughs,

requirements

classifications, and

analysis methodologies.

w

lm

IE

|

,=¢_

.,¢_

44
%

p

Section 4 - Requirements Analysis

f

.(NOTE

The contents of the

requirehlents analysis

report and the software
development/management

plan are covered under
PRODUCTS below. The

SSR is discussed separately

at the end of this section.

f(REFERENCE

See the Manager's
Handbook for Software

Development and the

Approach to Software Cost
Estimation (References 12

and 18, respectively) for

guidance in estimating

proiect size, costs, and
schedule.

functions/algorithms with those of existing

systems. Use the estimates to model overall
performance (CPU, I/O, etc.) for the

operational scenarios described in the SOC.
Adjust the SOC scenarios to take these results
into account.

Walk through the results of classification and

analysis with the requirements definition team.

Refine the reuse proposal into a realistic plan.

Analyze the software reuse proposal in the SOC

in light of the existing software's current
operational capabilities and any changes to the

requirements baseline.

Identify areas of technical risk. Plan and

conduct prototyping efforts or other appropriate

techniques to minimize these risks.

• Prepare the requirements analysis report and
distribute it before the SSR.

• Conduct the SSR and resolve all RIDs.

Activities of the Management Team

Prepare the software development/management plan
(SDMP). Review the histories of related, past projects for

applicable size, cost, and schedule data as well as lessons
learned. Determine what resources are needed, develop a

staffing profile, and estimate project costs. Identify project risks
and plan to minimize them. Document the technical and

management approaches that will be used on the project.

Staff and train the development team. Bring staff onto the

project as soon as possible following SRR (or, on large

projects, PSRR). Ensure communications among development
team members, managers, and the requirements definition team.

Also make certain that the requirements definition team is

adequately staffed following SRR, so that TBD and changing

requirements can be given prompt and thorough analysis.

• Interact with analysts and customers to facilitate resolution

of requirements issues. Work with team leaders to assess the

45

46

Section 4 - Requirements Analysis

REQUIREMENTS
DEFINITION
TEAM

SOFTWARE
DEVELOPMENT
TEAM

MANAGEMENT
TEAM

SRR

V
Conduct requirements walk-th roughs

V
Participate in walk-throughs

Answer developer questions

Incorporate changes to requirements

Participate in SSR_F

Participate in walk-throughs

Submit questions
Y

Classify requirements V V

Generate DFDslOO diagrams Conduct analysis walk-throughs

V
Identify risks; conduct prototyping efforts; refine operational scenarios

V
Refine the reuse proposal _F

Produce the requirements analysis report
Rr

Prepare and conduct the SSR
Resolve RIDs

v
Estimate resources and schedules; staff the development team

Facilitate resolution of requirements issues; review products
V

Prepare the SDMP _"
Direct the SSR

Plan the transition to preliminary design

V

SSR
i1=,.--

TIME

Figure 4-2: Timeline of Key Activities in the Requirements Analysis Phase

feasibility of proposed requirements changes and to estimate their impact on costs and
schedules.

Review the products of the requirements analysis process. Look at requirements
classifications, data-flow or object-oriented diagrams, the data dictionary, the

requirements analysis report, and the SSR hardcopy materials. Schedule the SSR and
ensure participation from the appropriate groups.

Plan an orderly transition to the preliminary design phase. Convey to the
development team members the parts of the software development plan that apply to

preliminary design (e.g., design standards and configuration management procedures)

and instruct them in the specific software engineering approach to use during design.

While the key team members are preparing for SSR, have the remainder of the

development team begin preliminary design activities.

r

_=

J

_2

l
!

=-

'It

lIE
B

=

Section 4 - Requirements Analysis

7

METHODS AND TOOLS

The following methods, techniques, and tools are used to support
the activities of the requirements analysis phase:

• Requirements walk-throughs
• Requirements classifications

• Requirements forms
• Structured and object-oriented requirements analysis
• CASE tools

• Prototyping

• The project library

Each is discussed below.

Requirements Walk- Throughs

At the beginning of the requirements analysis phase, developers
meet informally with analysts of the requirements definition team to

go through the requirements and specifications. During these initial
walk-throughs, analysts discuss each of the specifications, explain

why certain algorithms were selected over others, and give
developers the opportunity to raise questions and issues.

After developers have analyzed and classified the requirements and

specifications, they conduct walk-throughs of their results for the

requirements definition team. One walk-through should be held for
each major function or object in the system. During these later

walk-throughs, both teams review all problematic specification items

and discuss any needed changes to the requirements and

specifications document.

To ensure that all problem areas and decisions are documented, one
member of the development team should record the minutes of the

walk-through meeting. Developers will need the minutes to fill out

requirements question-and-answer forms for any issues that require
confirmation, further analysis, or other action by the requirements

definition team.

Requirements Classification

When the development team is thoroughly familiar with the

requirements and specifications document, they take each passage
(sentence or paragraph) in the requirements and specifications
document and classify it as either mandatory, requires review, needs

clarification, information only, or TBD.

47

Section 4 - Requirements Analysis

An item is mandatory if it is explicitly defined in project-level
requirements documents such as the SIR/3 or SORD, or if it has

been derived from analysis of the project-level requirements. If

mandatory items are removed from the specifications, the system
will fail to meet project-level requirements.

If (on the basis of project-level requirements and the system and
operations concept) there is no apparent need for a particular
requirement or specification, then that item requires review (i.e.,

further analysis by the requirements definition team). The item

must be deleted from the specification (by means of a

specification modification) or moved into the mandatory
category before CDR.

An item needs clarification when it is ambiguous, appears

infeasible, or contradicts one or more of the other requirements
or specifications.

An item is labelled as information only

if it contains no requirement or

specification P.g,r.se. Such an item may ('H_NT
provide background information, r

helpful hints for the software developer,
etc. V
A requirement or specification item is
TBD if (1) the item contains a statement

such as "the process is TBD at this
time," or (2) information associated

with the item is missing or undefined.

ff the requirements and
specifications are available in a

database, enter the classifications

end supporting commentary into

the database online. Otherwise,

summarize each requirement or

specification item, create a list of
the summaries, and use the lists

to assign classifications.

Requirements Forms

During the requirements analysis and subsequent phases, question-
and-answer forms are used to communicate and record requirements

issues and clarifications. Specification modifications are used to

document requirements changes.

The development team uses question-and-answer forms to track

questions submitted to the requirements definition team and to verify

their assumptions about requirements. Managers of the

requirements definition team use the forms to assign personnel and
due dates for their team's response to developers. Responses to

questions submitted on the forms must be in writing.

question-and-
answer forms

The question-and-answer form cannot be used to authorize changes
to requirements or specifications. If analysis of the submitted

E

|

i-

48

Section 4 - Requirements Analysis

f

specification
modifications

question or issue reveals that a requirements change is needed,
members of the requirements definition team draft a specification

modification. Proposed specification modifications must be

approved by the managers of both the requirements definition and

the development teams and by the CCB. The requirements

definition team incorporates all approved specification modifications

into the requirements and specifications document.

Analysis Methods and CASE Tools

The methods and tools applicable for requirements analysis are the

same as those recommended for the requirements definition phase in

Section 3. The development team will generally use the same

method as was used by the requirements definition team to take the

analysis down to a level of detail below that provided in the

specifications. This allows the development team to verify the

previous analysis and to fill in any gaps that may exist in the
document. If CASE tools were used in the requirements definition

phase to generate data flow or object diagrams, it is important to use
the same tools in the requirements analysis phase. The value of a

CASE tool as a productivity and communication aid is greatly

reduced if developers must re-enter or reformat the diagrams for a
different tool.

If the requirements definition team has used functional

decomposition for their analysis and the development team needs to

generate an object-oriented design, then extra analysis steps are
required. The development team must diagram the details of the

specification at a low level, then use the diagrams to abstract back up

to higher-level requirements. This allows the team to take a fresh,

object-oriented look at the system architecture and to restructure it as
needed.

Prototyping

During the requirements analysis phase, prototyping activities are

usually conducted to reduce risk. If unfamiliar technology (e.g.,
hardware or new development language features) will be employed

on the project, prototyping allows the development team to assess
the feasibility of the technology early in the life cycle when changes
are less costly to effect. If system performance or reliability is a

major, unresolved issue, the team can prototype critical operations

or algorithms.

On projects where the requirements for the user interface must be

prototyped -- either because the interface is critical to system
success or because users are uncertain of their needs -- a tool that

49

Section 4 - Requirements Analysis

allows the developer to set up screens and
windows rapidly is often essential. With such

a tool, the developer can give the user the "look

and feel" of a system without extensive

programming and can obtain early feedback.

The tool should be able to generate menus,
multiple screens, and windows and respond to

input. One such tool that has been successfully
used in the SEL is Dan Bricklin's Demo

Program.

f(RULE

Caution must be exercised to ensure
that any prototyping activity that is
conducted is necessary, has a defined
goal, and is not being used as a means
to circumvent standard development
procedures. See PRODUCTS in
Section 4 for additional guidance on
how to plan a prototyping effort.

Project Library

In each software development project, one team member is assigned
the role of librarian. During a project, the librarian (sometimes

called the software configuration manager) maintains the project
library, which is a repository of all project information. The

librarian also maintains configured software libraries and operates

various software tools in support of project activities.

The librarian establishes the project library during the requirements
analysis phase. In general, the project library contains any written

material used or produced by the development team for the purpose
of recording decisions or communicating information. It includes

such items as the requirements and specifications document,

requirements question-and-answer forms, approved specification

modifications, and the requirements analysis summary report.
Necessary management information, such as the software

development/management plan, is "_so included.

the

librarian

MEASURES

The following paragraphs describe the measures and evaluation
criteria that managers can use to assess the development process
during the requirements analysis phase.

Objective Measures

The progress and quality of requirements analysis are monitored by
examining several objective measures:

• Staff hours -- actual, cumulative hours of staff effort, as a total

and per activity

• Requirements questions and answers -- the number of question-
and-answer forms submitted versus the number answered

50

2-

=

II

E

!

r_

E

i

qr_
m

Section 4 - Requirements Analysis

/-

Table 4-1. Objective Measures Collected During the Requirements Analysis Phase

MEASURE

Staff hours (total and
by activity)

Requirements (changes
and additions to
baseline)

Requirements (TBD
specifications)

Requirements
(Questions/answers)

Estimates of total
SLOC, total effort,
schedule, and reuse

SOURCE

Developers and
managers
(via Personnel
Resources Forms

(PRFs))

Managers
(via Development
Status Forms (DSFs))

Managers

Managers (via DSFs)

i Managers (via Project
Estimates Forms

(PEFs))

FREQUENCY
COILECT/ANALYZE)

Weekly/monthly

Biweekly/biweekly

Biweekly/biweekly

Biweekly/biweekly

Monthly/monthly

DATA COLLECTION

CONTINUED

iv

BEGUN

NOTE "_

f The SEL uses 3 hardeopy forms to
collect metrics during the requirements
analysis phase. The Personnel
Resources Form is used by the
development team to record weekly
effort hours. The Project Estimates
Form is used by managers to record
their monthly size and effort estimates.
The Development Status Form is used
to record the number of requirements
changes, end number of requirements
questions vs. answers. See Reference
19 for detailed information about SEL
data collection forms and procedures.

TBD requirements -- the number of

requirements classified as TBD versus the
total number of requirements

Requirements changes -- the total
cumulative number of requirements for

which specification modifications have been

approved
Estimates of system size, reuse, effort, and
schedule -- the total estimated number of

lines of code in the system; the estimated
number of new, modified, and reused

(verbatim) lines of code; the total estimated
staff hours needed to develop the system;
and estimated dates for the start and end of

each phase of the life cycle.

For each of these measures, Table 4-1 shows who provides the

data, the frequency with which the data are collected and analyzed,
and whether data collection is continued from the requirements

definition phase or newly initiated.

51

Section 4 - Requirements Analysis

Evaluation Criteria

Staff hours are usually graphed against a profile of estimated staff
effort that is generated by the software development manager for the
SDMP (Figure 4-5). This early comparison of planned versus
actual staffing is used to evaluate the viability of the plan.

staff hours

In the flight dynamics environment, hours that are lower than

expected are a serious danger signal -- even if schedules are being
met m because they indicate the development team is understaffed.
If too few developers perform requirements analysis, the team will
not gain the depth of understanding necessary to surface
requirements problems. These problems will show up later in the
life cycle when they are far more costly to rectify.

A growing gap between the number of questions submitted and the
number of responses received or a large number of requirements
changes may indicate problems with the clarity, correctness, or
completeness of the requirements as presented in the requirements
and specifications document. Data from similar past projects should
be used to assess the meaning of the relative sizes of these numbers.

requirements
questions
and changes

Because unresolved TBD requirements can necessitate severe design
changes later in the project, the number of TBD requirements is the
most important measure to be examined during this phase.
Categorize and track TBD requirements according to their severity.
TBD requirements concerning external interfaces are the most
critical, especially if they involve system input. TBDs affecting
internal algorithms are generally not so serious.

A TBD requirement is considered severe if it could affect the

functional design of one or more subsystems or of the high-level
data structures needed to support the data processing algorithms.
Preliminary design should not proceed until all severe TBD
requirements have been resolved. A TBD requirement is considered
nominal if it affects a portion of a subsystem involving more than
one component. Preliminary design can proceed unless large
numbers of nominal TBD requirements exist in one functional area.
An incidental TBD requirement is one that affects only the internals
of one unit. Incidental TBD requirements
should be resolved by the end of detailed
design.

For each TBD requirement, estimate the effect
on system size, required effort, cost, and
schedule. Often the information necessary to
resolve a TBD requirement is not available
until later, and design must begin to meet fixed
deadlines. These estimates will help determine
the uncertainty of the development schedule.

MORE MEASURES

TBD
requirements

Consider tracking these
additional measures of

progress during the require-

ments analysis phase:
• number of requirements

classified vs. total

requirements

• number of requirements

die grams completed vs.

estimated total diagrams

i

=

%

q¢

.=

z

q[

52

_t

Section 4 - Requirements Analysis

LEQMTS PRELIM DETAILED BUILD BUILD BU D SYSTEM I ACCEPT- SYSTEM

26 TESTING w

• 00 00

u. SECOND REPLAN _ • II ACTUAL DATA

22 • •

• • •,,.,.
uJ • •

•
18 •

_; • -

FIRST REPLAN • • •

14 o • oO

g •
I_; 10 •

• ORIGINAL PLAN

w,

I,-,, O0_

_" 2 PDR CDR AUDIT

Explanation: The originalstaffing planwas basedon an underestimateOfthe systemsize. Towardthe end ofthe designphase, 40% more
effortwas requiredona regularbe=is. Thi,=wall,one of many Indicatorsthat the systemhad grown,=_"_dthe projec=was replannedaccordingly.
However. effortcontinuedto growwhenthe second plan calledfor it toleveloff and decline.When itwas cleat that stillmore staff wouldbe
requiredto maintainprogress,an auditwas conducted.The auditrevealedthat the projectwas plaguedwith an unusuallylargenumberof
!Jntasolved"r'BDIand requirementschangesthat were causing arl exoeSsiveamount of rework andthat -- as pactof the correctiveaclion--

another reOlanwas necesscn/.

Figure 4-3. Effort Data Example -- ERBS AGSS

system size

estimates

The growth of system size estimates is another key indicator of
project stability. Estimating the final size of the system is the first

step in the procedure for determining costs, schedules, and staffing
levels (Section 3 of Reference 12). Make the initial estimate by

comparing current requirements with information from past projects

within the application environment. Update and plot the estimate

each month throughout the life cycle.

J"NOrE "_ •

In comparing actual data (e.g.,

staff hours} versus estimates,

the amount of deviation can

show the degree that the

development process or product is

varying from what was expected, or it
can indicate that the original plan was in

error. If the plan was in error, then

updated planning data (i.e., estimates)

_, must be produced.

As the project matures, the degree of change in
the estimates should stabilize. If requirements

growth pushes the system size estimate beyond

expected limits, it may be necessary to
implement stricter change control procedures or
to obtain additional funding and revise project

plans. See Section 6 of Reference 12 for
additional guidance in evaluating size estimates.

53

Section 4- Requirements Analysis

PRODUCTS

The following key products are produced during this phase:

• The requirements analysis report

• The software development/management plan

• Updated requirements and specifications document
• Prototyping plans (as needed)

These products are addressed in the paragraphs that follow.

The Requirements Analysis Report

The requirements analysis report establishes a basis for beginning
preliminary design and is, therefore, a key product of the

requirements analysis phase. This report includes the following:

• The updated reuse plan (The original reuse proposal was

developed during the requirements definition phase and recorded

in the systems and operations concept document. It is adjusted

to reflect approved requirements changes and the results of
analysis of the reusable software's current capabilities.)

• Updates to operational scenarios (in view of prototyping resuitsl

performance analyses, requirements changes, and functional
reallocations)

• The DFDs or object-oriented diagrams generated to analyze and
complete the specifications

• A summary of the results of requirements analysis, highlighting
problematic and TBD requirements, System constraints, and
development assumptions

• An analysis of the technical risks of the project, as well as cost

and schedule risks resulting from TBD requirements or other
factors

Figure 4-4 presents the format and contents of the requirements

analysis report.

The Software Development/Management Plan

The SDMP provides a detailed exposition of the specific technical

and management approaches to be used on the project. In the
SDMP, the development team manager discusses how the

recommended approach will be tailored for the current project and

provides the resource and schedule estimates that will serve as a

baseline for comparisons with actual progress data.

54

F:

i

%

iig
i

2--

z

z
=

r

E

Section 4 - Requirements Analysis

J

REQUIREMENTS ANALYSIS REPORT

This report is prepared by the development team at the conclusion of the requirements analysis
phase. It summarizes the results of requirements analysis and establishes a basis for beginning
preliminary design. The suggested contents are as follows:

1. Introduction J purpose and background of the project, overall system concepts, and
document overview

2. Reuse proposal m key reuse candidates and overall architectural concept for the system

3. Operations overview -- updates to system and operations concepts resulting from work
performed during the requirements analysis phase

a. Updated operations scenarios
b. Operational modes, including volume and frequency of data to be processed in each

mode, order, and type of operations, etc.
c. Updated descriptions of input, output, and messages

4. Specification analysis
a. Summary of classifications (mandatory, requires review, information only, needs

clarification, or TBD) assigned to requirements and specifications

b. Problematic specifications -- identification and discussion of conflicting, ambiguous,
infeasible, untestabie, and TBD requirements and specifications

c. Unresolved requirements/operations issues, including the dates by which resolutions

are needed
d. Analysis of mathematical algorithms

5. System constraints
a. Hardware availability m execution, storage, peripherals

b. Operating system limitations
c. Support software limitations

6. Performance estimates and models

7. Development assumptions

8. Risks, to both costs and schedules. (These should include risks related to TBD or changing

requirements, as well as technical risks.)

9. Prototyping efforts needed to resolve technical risks, including the goals and completion
criteria for each prototyping effort

10. Data flow or object-oriented diagrams _ results of all structured or object-oriented analysis
of the requirements performed during the requirements analysis phase

11. Data dictionary m for the updated processes, data flows, and objects shown in the

diagrams

Figure 4.4. Requirements Analysis Report Contents

The manager prepares the SDMP during the requirements analysis phase and keeps it up to
date throughout the development life cycle. Because of the primary importance of this

plan, it is described in detail in the Manager's Handbook for Software Development

(Reference 12).

55

,Section 4 - Requirements Analysis

The SDMP includes a software development approach; a description of risks and risk
mitigation; an initial estimate of the system's size; and estimates of the schedule, staffing,
resources, and cost of the project. Figure 4-5 outlines the contents of the SDMP.

mt

i

i

SOFTWARE DEVELOPMENT/MANAGEMENT PLAN

In some sections of the plan, material (shown in italics) is to be regularly added during the life of
the project. Other sections should be revised and reissued if circumstances require significant
changes in approach.

1. INTRODUCTION

1.1
12

13

Purpose B brief statement of the project's purpose.
Background B brief description that shows where the software products produced
by the project fit into the overall system.
Organization and Responsibilities
1.3.1 Project Personnel -- explanation and diagram of how the development team

will organize activities and personnel to carry out the project: types and
numbers of personnel assigned, reporting relationships, and team members'
authorities and responsibilities (see Reference 12 for guidelines on team
composition).

1.3.2 Interfacing Groups --list of interfacing groups, points of contact, and
group responsibilities.

2. STATEMENT OF PROBLEM -- brief elaboration of the key requirements, the steps
(numbered) to be taken to accomplish the project, and the relation (if any) to other projects.

3. TECHMCAL APPROACH

3.1

3.2

3.3

3.,4,
3.5

3.6

Reuse Strategy _ high-level description of the current plan for reusing software from
existing systems.
Assumptions and Constraints --that govern the manner in which the work will be
performed.
Anticipated and Unresolved Problems --that may affect the work and the
expected effect on each phase.
Development Environment B development computer and programming languages.
Activities, Tools, and Products --for each phase, a matrix showing (a) the major
activities to be performed, (b) the development methodologies and tools to be
applied, and (c) the products of the phase. Includes discussion of any unique
approaches or activities.
Build Strategy _ which portions of the system will be implemented in which builds
and the rationale for this. Determined during the pre/iminary design phase. Updated
at the end of detai/ed design and after each build.

=
|

==

IE

IE

=

Figure 4-5. SDMP Contents (1 of 2)

..=

56
r_

j,=

, Section 4 - Requirements Analysis

_r

w

=

MANAGEMENTAPPROACH

4.1

4.2

43

4,4

4.5

Assumptions and Constraints -- that affect the management approach,
including project priorities.
Resource Requirements --tabular lists of estimated levels of resources required,
including estimates of system size (new and reused SLOC), staff effort (managerial,
programmer, and support) by phase, training requirements, and computer resources.
Includes estimation methods or rationale used. Updated estimates are added at the
end of each phase.
Milestones and Schedules -- list of work to be done, who will do it, and when it
will be completed. Includes devel615ment life cycle (phase start and finish dates);
build/release dates; delivery dates of required external interfaces; schedule for
integration of externally developed software and hardware; list of data, information,
documents, software, hardware, and support to be supplied by external sources and
delivery dates; list of data, information, documents, software, and support to be
delivered to the customer and delivery dates; and schedule for reviews (internal
and external). Updated schedules are added at the end of each phase.
Measures -- a table showing, by phase, which measures will be collected to capture
project data for historical analysis and which will be used by management to
monitor progress and product quality (see Reference 12). If standard measures will
be collected, references to the relevant Standards and procedures will suffice.
Describes any measures or data collection methods unique to the project.
Risk Management -- statements of each technical and managerial risk or
concern and how it is to be mitigated. Updated at the end of each phase to
incorporate any new concerns.

5. PRODUCT ASSURANCE

6.

7.

5.1 Assumptions and Constraints -- that affect the type and degree of quality
control and configuration management to be used.

5,2 Quality Assurance -- table of the methods and standards that will be used to
ensure the quality of the development process and products (by phase). Where
these do not deviate from published methods and standards, the table should
reference the appropriate documentation. Methods of ensuring or promoting quality
that are innovative or unique to the project are described explicitly. Identifies the
person(s) responsible for quality assurance on the project, and defines his/her
functions and products by phase.

5,3 Configuration Management -- table showing products controlled, as well as

tools and procedures used to ensure the integrity of the system configuration
(when is the system under control, how are changes requested, who makes the
changes, etc.). Unique procedures are discussed in detail. If standard configuration
management practices are to be applied, references to the appropriate documents
are sufficient. Identifies the person responsible for configuration management and
describes this role. Updated before the beginning of each new phase with detailed
configuration management procedures for the phase, including naming conventions,
directory designations, reuse libraries, etc.

APPENDIX: PROTOTYPING PLANS -- collected plans for each prototyping effort to be
conducted on the project.

PLAN UPDATE HISTORY -- lead sheets from each update of the SDMP, indicating
which sections were updated and when the update was made.

Figure 4-5. SDMP Contents (2 of 2)

57

Section 4 - Requirements Analysis

Updated Requirements and Specifications

During this phase, the requirements definition team prepares updates
to the requirements and specifications docuhaent on the basis of

approved specification modifications. Additional specification
modifications may be approved as a result of discussion at the SSR

or the RID process. The requirements definition team must ensure
that the updated requirements and specifications document is

republished shortly after the SSR, so that it will be available to the

developers as they generate the software design.

PrototypMg Plans

Managing a prototype effort requires special vigilance. Progress is
often difficult to predict and measure. A prototyping effort may
continue indefinitely if no criteria are established for evaluating the

prototype and judging completion. Writing a plan for each

prototyping activity, no matter how brief, is vital to establishing
control.

The length of the plan and the time to prepare it should be

proportional to the size and scope of the prototyping effort. A one-

page plan may be all that is required for small prototyping efforts. A
brief plan need not be published separately but may, instead, be

incorporated into the SDMP (Figure 4-5)

The following items should be included in the plan:

• Objective of the prototype -- its purpose and use
• Statement of the work to be done and the products to be

generated
• Completion criteria
• Assessment methods -- who will evaluate the prototype and

how it will be evaluated

• Technical approach

• Resources required- effort and size estimates, staff, hardware,

software, etc
• Schedule

The SDMP should contain summaries of the detailed prototyping

plans. Each summary should describe the general approach, discuss
the items to be prototyped, include effort estimates, provide a

schedule, and discuss the rationale for the schedul:e.

I

.=

L

Q

J

=

58

Section 4 - Requirements Analysis
ii11 i1 i i iiii

SOFTWARE SPECIRCATION REVIEW

At the conclusion of requirements analysis, the development team

holds an SSR. This is a high-level review conducted for project
management and the end users of the system. The SSR format,

schedule, and participants axe itemized in Figure 4-6.

SSR FORMAT

Presenters -- software development team

Participants
• Requirements definition team
• Customer interfaces for both the requirements definition

and software development teams
• User representatives
• Representatives of interfacing systems
• Quality assurance representatives for both teams
• System capacity�performance analysts
• CCB

Schedule -- after requirements analysis is complete and before the
preliminary design phase is begun

Agenda -- selective presentation of the results of requirements
analysis, directed primarily toward project management and the
users of the system

Materials Distribution

• The requirements analysis report and software development/
management plan are distributed 1 to 2 weeks before SSR.

• Hardcopy material is distributed a minimum of 3 clays before SSR.

y

fr

Figure 4-6. SSR Format

SSR Hardcopy Material

The hardcopy materials for the review will contain some of the same
information found in the requirements analysis report. Keep in

mind that there is some flexibility in selecting the most appropriate

information to include in the presentation. The contents suggested in

Figure 4-7 axe intended as a guideline.

59

Section 4 - Requirements Analysis

-%

HARDCOPY MATERIAL FOR THE SSR

1, Agenda -- outline of review material

2. Introduction -- background of the project and purpose of system

3. Analysis overview -- analysis approach, degree of innovation required in analysis, special
studies, and results

4. Revisions since SRR _ changes to system and operations concepts, requirements, and

specifications effected following the SRR

5. Reusable software summary
a. Key reuse candidates _ identification of existing software components that satisfy

specific system specifications exactly or that will satisfy the specifications
after modification

b. Overall architectural concept for the system
c. Matrix of requirements to be fulfilled by reused components

6. Requirements classification summary
a. List of requirements and specifications with their assigned classifications

(mandatory, requires review, needs clarification, information only, or TBD)
b. Problematic specifications -- identification and discussion of conflicting, ambiguous,

infeasible, and untestable requirements and specifications
c. Unresolved requirements/operations issues, including the dates by which resolutions to

TBDs are needed (NOTE: This is a key element of the SSR.)

7, Functional or object-oriented specifications
a. Object diagrams or high-level data flow diagrams showing input, transforming

processes, and output
b. Data set definitions for external interfaces to the system

Performance model -- key estimates and results of modeling system performance8,

9.

10.

11.

12.

13.

Development considerations
a. System constraints -- hardware availability, operating system limitations, and support

software limitations

b. Utility, support, and test programs -- list of auxiliary software required to support
development (e.g., data simulators, special test programs, software tools, etc.)

c. Testing requirements
d. Development assumptions

Risks, both to costs and schedules -- includes how risks are identified, their potential
impact, and how they will be managed. Covers risks related to TBD or changing

requirements as well as technical risks

Summary of planned prototyping efforts needed to resolve technical risks, including
the goals and schedule for each effort and a summary of any prototyping conducted to date

Key contacts -- leaders of technical teams, application specialists, and other key project
members

Milestones and schedules -- includes size estimates, development life cycle (phase start
and finish dates), schedule for reviews (internal and external), build/release requirements,

delivery dates of required external interfaces, schedule for integration of externally
developed software and hardware

Figure 4-7. SSR Hardcopy Material

6O

z

i

i
_t

t

=

,i

Section 4 - Requirements Analysis

EXIT CRITERIA

To determine whether the development team is ready to proceed with
preliminary design, consider the following questions:

• Have all TBD requirements been identified and their impacts
assessed?

Are performance requirements (e.g., timing, memory, and
accuracy) clear? Are the requirements feasible, given the
environmental constraints? Are sufficient computer resources
available?

Have the key exit criteria for the phase been met? That is, has

the requirements analysis report been distributed, has the SSR

been successfully completed, and have all SSR RIDs been
answered?

When these criteria have been met, the requirements analysis phase

is complete.

61

C_

li
Q}

<:

.,,_ip 'l I , ,.AIiql qimmi I _i I I ,, _1 III q , , ,_ I III Ill II II IIIIlll AIIIll M I I _ , IIIIlllP ,,JII !hi dl , _1 I_1;11|1 Illlll I IIII I ,dllll _i_l I _i11I II :ill I! II _l Pg mq' ;;l, I J I j I

.. Section 5 - Preliminary Desi_ln,

IJRE
CYCI.B
PHA..RE_

SECTION 5

THE PREUMINARY DESIGN PHASE

PHASE HIGHLIGHTS

ENTRY CRITERIA If..- EXIT CRITERIA

• Requirements analysis report generated • Preliminary design report generated
• SSR completed • PDR completed
• SSR RIDs answered • PDR RIDs answered

PRODUCTS

* Preliminary design report

MEASURES--_.t._--

• Units identified/designed
• Requirements Q&As, TBDs, and changes
• Staff hours
• Estimates of system size, effort,

schedule, and reuse
+

,_i_;+ _P_._:_:`R;P_;_:_2_P_`_/_:_::_::::_:::::::_:: "_

;,, METHODS AND TOOLS
umm • Functional decomposition and

object-oriented design **
• Prologs and PDL
• Software engineering notebooks
• Design walk-throughs***
• Design inspections***
• Reuse verification
• Analysis methods

KEY ACTIVITIES

Development Team*
• Prepare preliminary design diagrams
• Prepare prologs and PDL
for high-level functions/objects

• Document the design in the preliminary
design report

• Conduct the PDR

Management Team
• Reassess schedules, staffing, training, and
other resources

• Plan, coordinate, and control requirements
"changes
• Control the quality of the preliminary

design process and products
• Plan the transition to detailed design

Requirements Definition Team
• Resolve outstanding requirements issues
• Participate in design walk-throughs and

PDR

• _ , ._e - _... -_ :,-< - _:,-.; ,-.. •.._.._... •'•" _ .. -.:.:.:, :.:,....- .- ..+:-.:.;,.+.;...+.:.:¢.:_+-....;...:...:.;.:<...,:._...:_.-.:,:,:.- .;.-.-.:_,:.....:.:+..,.._-,. +_ :,+.,e.:...... +.. ;.-.. :_+....,;_.._<.. : ,. ,.:.:.:-,:.:.- .+:.:.:+:.: :.++.,._>..;_,.:+.,:,. -+.;_,.-.;+-;-+_- -,;.;.;.:+;.;.;.:.;.:+_:.
,;+:

PREC'EDL_!GP_GE RLY,_,"-!I(P'_OTFILMED
63

Sec'don 5 - Preliminary Desi_ln

OVERVIEW

The purpose of the preliminary design phase is to define the high-
level software architecture that will best satisfy the requirements and

specifications for the system.

During preliminary design, the development team uses the updated

requirements and specifications document to develop alternative
designs and to select an optimum approach. The team partitions the

system into major subsystems, specifies all system and subsystem
interfaces, and documents the design using structure charts or

annotated design diagrams. Developers use an iterative design

process that proceeds somewhat differently, depending on whether a
functional decomposition or object-oriented design approach is
chosen.

Early in this phase, developers examine the software components
that are candidates for reuse and verify their compatibility with

overall system requirements and the emerging design. Prototyping

activities begun during the requirements analysis phase may
continue and new prototyping efforts may be initiated. Developers

also define error-handling and recovery strategies, determine user

inputs and displays, and update operational scenarios.

During this phase, the development team continues to work closely
with analysts of the requirements definition team to resolve

requirements ambiguities and TBDs. To ensure that the emerging
design meets the system's requirements, developers send formal

requirements questions to analysts for clarification, conduct walk-

throughs, and subject all design products to peer inspection.

The preliminary design phase culminates in

the preliminary design review (PDR), during

which developers present the rationale for

selecting the high-level system design. The

preliminary design report documents the

initial system design and is distributed for
review prior to the PDR.

Figure 5-1 presents a high-level data flow

diagram of the preliminary design process.

f(TAILORING NOTE

On projects with a high degree
of reuse, the preliminary and
detailed design phases may be
combined. In that case, both
preliminary and detailed design
activities are conducted, but
developers hold only a CDR and
produce only the detailed design
report.

64

R

I1

=

=
I

1

i

"1

|

Section 5 - Preliminary Desi_In

REOUIREMENTS ANALYS_S

PL "'_''/m R EPORTREUSE

ECISION$

DESIGN WALK-THROUGH

INFO

RZ_J_QUIREMENTS

i-=°.
D_N WALK-THROUGH

INFO

CONSTRUCT

DESIGN

DIAGRAMS

5.2
DIAGRAMS

UPDATED REQ_REMENTS ANGSPE_RCA_ONS

DOCUMENT

REUSABLE SOFTWARE

GENERATE

PROLOGS AND
PDL

S.3

PREPARE
PRELIMINARY

DESIGN REPOR1

$.4
SOFTWARE UBRARIES

PRELIMINARY DESIGN REPORT

RIDS AND

POR

PRESENTA_ON

CONDUCT

PREUMINARY

DESIGN

REVIEW

NOTE: The processes labelled 5.1, 5.2, and 5.3 are described in the KEY ACTIVITIES subsection. Prologs and PDL (5.3) and
design methodologies (5.2) are also discussed under METHODS AND TOOLS. The PDR is described under REVIEWS,
and the preliminary design document is covered in PRODUCTS,

Figure 5-1. Developing the Preliminary Design

65

.Section 5 - Preliminary Desi_ln

KEY ACTWmES

The following are the key activities of the development team, the

management team, and the requirements definition team during the
preliminary design phase. The development team performs the

principal activities of the phase. The requirements definition team
concentrates on resolving outstanding TBD requirements and

providing support to the development team. The relationships

among the major activities of these groups are shown in Figure 5-2.

Activities of the Development Team

Prepare preliminary design diagrams. Using functional

decomposition or object-oriented techniques, expand the
preliminary software architecture that was proposed in earlier

phases. Idealize the expanded architecture to minimize features
that could make the software difficult to implement, test,

maintain, or reuse.

Evaluate design options. Weigh choices according to system

priorities (e.g., optimized performance, ease of use, reuse
considerations, reliability, or maintainability). Use prototyping

and performance modeling to test ahematives, especially in risk
areasl

Examine the software components that

are candidates for reuse. If system

response requirements are especially

stringent, model the performance of the
reusable components. Update the reuse

plan to reflect the results of these reuse
verification activities.

Generate high-level diagrams of the

selected system design and walk the

analysts of the requirements definition

team through them. Use the high-level

design diagrams to explain the system

process flow from the analyst's

perspective. Focus on system and
subsystem interfaces. Explain
refinements to the operations scenarios

arising from analysis activities and

include preliminary versions of user

screen and report formats in the walk-

through materials.

.(TAILORING NOTE "_

Design diagrams, prologs,
and PDLare required for all
systems, regardless of the

design methodology applied.
METHODS AND TOOLS
discusses ways these items

are represented.

Reuse verification encompasses

designs, documentation, and

test plans and data as well as
code. See METHODS AND

TOOLS for more details.

66

!(

i

!

|

!
q

z

i

,11

_i

|

!1

l

Section 5 - Preliminary Desi_ln

REQUIREMENTS
DEFINITION
TEAM

SOFTWARE
DEVELOPMENT
TEAM

MANAGEMENT
TEAM

Answer developer questions; resolve requirements issues, TBDs

Participate in design walk-throughs _T

Participate in PDR

V
Develop idealized design

Evaluate design alternatives; prototype risk areas
V

Conduct reuse trade-off ana lyses

Prepare preliminary design diagrams

Refine operational scenarios

Conduct design walk-throughs

V

"V'
Prepare prologs, PDL

Prepare preliminary design report

Conduct design inspections

Prepare and conduct PDR

Resolve PDR RIDs

Record project history data; reassess schedules, staffing, resources

V

SSR

Plan and control requirements changes; control quality

V
Update SDMP estimates

Plan the transition to detailed design

Direct the PDR

v

TIME ..--

Figure 5-2. Preliminary Design Phase Timeline

6?

Section 5 - Preliminary Desi_ln

Prepare prologs and PDL for the high-level functions/objects.

For FORTRAN systems, prepare prologs and PDL to one level

below the subsystem drivers. For Ada systems, prepare and

compile specifications for the principal objects in the system and
construct sufficient PDL to show the dependencies among

packages and subprograms. (See Figure 5-4.)

Provide completed design diagrams, unit

prologs/package specifications, and PDL
to other members of the development team

for independent inspection and
certification.

Document the selected design in the

preliminary design report. Include the

reuse plan, alternative design decisions,
and external interfaces.

Conduct the PDR and resolve RIDs.

Record design changes for use in the
detailed design phase, but do not update

the preliminary design report.

NOTE "_
f

Contents of the preliminary

design report and PDR

materials are provided under

the PRODUCTS and REVIEW
headings, respectively, in this
section. Inspection and

certification procedures are
covered under METHODS

AND TOOLS.

Activities of the Management Team

During preliminary design, the manager's
focus changes from planning to control. The

following are the major management activities

of this phase: (,.(NOTE

Reassess schedules, staffing, training,

and other resources. Begin the software

development history by recording lessons

learned and project statistics from the

requirements analysis phase. Include

percentages of project effort and schedule
consumed, growth of system size
estimates, and team composition.

Material for the software

development history (SDH) is

collected by the management

team throughout the life of the

project. See Section 9 for an
outline of SDH contents.

Ensure that the development team contains
a mix of software engineers and personnel experienced in the

application area. If the project is large, partition the development
team into groups, usually by subsystem, and appoint group

leaders. Adjust staffing levels to compensate for changes in

requirements and staff attrition, and ensure the team obtains the

gaining it needs to meet specific project demands.

68

m

I

ii

=

!

'1

qll

Q

i
t

Section 5 - Preliminary Design

Plan, coordinate, and control requirements changes. Interface

with analysts and the customer to facilitate resolution of
requirements issues and TBDs. Monitor the number and

severity of requirements questions submitted to analysts and the

timeliness of responses. Ensure that analysts and the customer

know the dates by which TBDs need to be resolved and
understand the impact of changing or undetermined requirements
items.

Assess the technical impact and cost of each specification
modification. Constrain modifications that necessitate extensive

rework and non-critical enhancements.

Control the quality of the preliminary design process and its
products during day-to-day management activities. Ensure that

design walk-throughs, inspections, and reviews are scheduled
and conducted. Attend walk-throughs and, optionally,

inspections and oversee the reporting, tracking, and resolution

of the design issues that arise. Make certain that all requisite
software documentation is generated and review the preliminary

design document. Ensure that the team adheres to project
standards and configuration management procedures.

Plan an orderly transition to the detailed design phase.
Consider the impacts of TBDs, specification modifications, and
schedule or team adjustments. Revise project estimates of

effort, duration, and size and update corresponding sections of

the SDMP. Develop the project build strategy and prepare a

preliminary build plan reflecting prototyping results, project

risks, and remaining TBDs.

Increase team size if necessary to begin detailed design and

address the training needs of additional personnel. Oversee the
establishment of online libraries to store unit prologs, PDL, and

reused code. While project and group leaders prepare for PDR,

start the rest of the team on detailed design activities.

Control the PDR and ensure that all exit criteria have been met

before declaring the phase complete.

Activities of the Requirements Definition Team

During the preliminary design phase, the requirements definition
team provides support to software developers through the following
activities:

69

%

Section 5 - Preliminary Desi_ln

Continue to resolve requirements issues and TBDs. Clarify

ambiguous, conflicting, or incomplete requirements. Provide
prompt, written replies to developers' requirements questions

and discuss these responses with developers. Respond to
changes in high-level system requirements, evaluate the impact

of each change, and prepare specification modifications

accordingly.

Participate in design walk-throughs and the PDR.
Thoroughly analyze the proposed design. Work with
developers to refine the operational scenarios and preliminary

user interface. Follow up with developers to address issues
raised during the walk-throughs.

Review the preliminary design report and all supporting

hardcopy materials before PDR. Pose questions and provide
critiques of the initial, high-level system design during the

review meeting, and use RIDs to document serious
discrepancies.

METHODS AND TOOLS

The primary methods and tools used during the preliminary design

phase are

• Functional decomposition and object-oriented design

• Pro_10gs and PDL
• Software engineering notebooks (SENs)

• Design walk-throughs
• Design inspections
• Reuse verification

• Analysis methods: prototyping, performance modeling, and

code analysis

Functional Decomposition and Object-
Oriented Design

Design technologies are methods by which

software developers define the major
components of a software system, describe

the interrelationships among components, and
create a foundation for implementation.

Design diagrams, structure charts, and

documentation support these methods.
Through these tools, developers demonstrate
that a chosen design approach incorporates

,..(NOTE

During the design and implemen-
tation phases, the software

development and requirement=
definition teams continue to use

question-and-answer form= and

specification modification= to record

and resoJve requirements issues.
See METHODS AND TOOLS,
Section 4, for more details.

70

IE

11

i

!
W

!

q_

2

- Section 5 - Preliminary Design

s

=

_f REFERENCE

(_ REFERENCE

A thorough discussion of

object-oriented analysis

end design is provided in
References 11, 16, and 17.

Structured design

principles
(Reference 13)

form the basis of
the functional

decomposition
method used in

the SEL.

each capability and interface specified

in the requirements and specifications
document. The two principal design

technologies used on SEL-monitored
projects are functional decomposition

and object-oriented design (00]3).

When using a functional decomposition
design method, developers identify the

major functions of a system and
successively refine them into smaller

and smaller functionally oriented

components. High levels in the design
define the algorithmic abstraction (the

"what" Of the process), and the lower
levels provide primitive operations that

implement the higher level actions.

In the flight dynamics environment, functional decomposition is
normally used for the development of FORTRAN systems. When

using this design approach, functional baseline diagrams (tree
charts) are generated during preliminary design for all components
to two levels below the subsystem drivers (as shown in Figure 5-3).

The remaining design diagrams (levels 3 to N) are completed during
detailed design. Separate structure charts may augment the

diagrams; alternatively, interface information may be added directly
to the tree charts.

f(REFERENCE

Cohesion and coupling,
indicators of _ftware

sysllwn strength,

reliability, end

maintainability, ere
discumed in Reference 13.

The SEL also recommends that functionally

oriented designs employ the principles of

information hiding, data abstraction, loose

coupling, and cohesion. Components below the
heavy line in the functional decomposition
hierarchy of Figure 5-3 denote low-level routines
or utilities whose details are deferred to the detailed

design phase. However, developers must still
understand the total system architecture to produce

a correct preliminary design.

When using an object-oriented approach, designers

identify the abstract objects and their attributes that
model the real-world system, define operations on

those objects, and establish the interfaces between

them. By focusing primarily on the objects (the
"things" of the system) rather than on the actions
that affect those objects, object-oriented techniques

71

Section 5 - Preliminary Desi_ln _"

EXECUTIVE

t
SYSTEM

LEVEL

I
SUBSYSTEM

LEVEL

I

J
[

SUBSYSTEM

LEVEL 1

[I

SUBSYSTEM

LEVEL 2

(LEVELS BELOW THIS LINE ARE NOT

ADORESSED UNTIL DETAILED DESIGN)

SUBSYSTEM

LEVEL 3

| I

I
I

I

i-I-----I

t _l.=..,,_,_..-Dm_ PRELIMINARy DESIGN

m _ DETAILED DESIGN

SUBSYSTEM

LEVEL N

Figure 5-3. Extent of the Design Produced for FORTRAN Systems During the
Preliminary and Detailed Design Phases

i

E
1[

E

--__

_=

allow designers to map their solutions more directly to the problem.

In the flight dynamics environment, Ada is typically the language involved when OOD

techniques are chosen. In the preliminary design of Ada systems, all packages and
subprograms that address elements of the problem domain are identified. This includes all

high-level objects necessary to implement the system capabilities, the functions and
procedures affecting these objects, externally visible data, and all interfaces and
dependencies.

72

m

i

=
it

mm

" Section 5 - Preliminary Design

Developers use object-oriented, stepwise refinement until all subsystems, all packages, and

all visible subprograms within those packages have been identified. Design of package
bodies (the hidden elements shaded in Figure 5-4) is reserved until the detailed design

phase. A generalized preliminary design diagram appropriate for an Ada system is shown

in Figure 5-4.

=7

i

PACKAGE

SUB-
PROGRAM

MAIN
SUB-

PROGRAM

,..,,,.

SUBSYSTEM 1

\

\

\

SUBSYSTEM 2

\

\

\

PACKAGE

PACKAGE

/ \

/ \

/ \

PACKAGE

_SPECIFICAT1ON _ HIDDEN

VISIBLE _p

PART ART

NOTE: The shaded elements of
this figure represent hidden
portions that are not specified
until the detailed design phase.

Figure 5-4. Level of Detail Produced for Ada Systems During Preliminary Design

73

Section 5 - Preliminary Desi_ln

Prologs and PDL

Comparable to the blueprint in hardware

systems, prologs and PDL communicate the

concept of the design to the level of detail

necessary for implementation. The prolog
provides a textual explanation of the unit's

purpose and variables; PDL provides a formal,
algorithmic specification for the unit. By using

prologs and PDL, the developer is able to

communicate the exact intent of the design to
reviewers and coder_.

The SEL views the use of prologs and PDL

during design as beneficial and cost-effective.
Regardless of the design methodology chosen,

developers are required to generate unit prologs

and high-level PDL (consisting of such items as

call dependencies, major logic branches, and
error-handling strategies) to complete the
preliminary design.

f(REFERENCE

SEL conventions for
prologs and PDL are found
in References 22 (Ada
conventions) and 23
(FORTRAN conventions}.

.(TAILORING NOTE

For large Ada systems with broad,
fiat designs, creating PDL for
externally visible elements of all
packages and all visible
subprograms entails extensive
effort. When this situation exists,
software managers should adjust
effort and schedule allocations to
allow sufficient time to complete
this work in preliminary design.

For FORTRAN systems, prologs and PDL are produced to one

level below the subsystem drivers. For object-oriented systems,

package specifications (which serve as prologs in Ada systems) and
high-level PDL are generated for all program elements depicted in

the design diagrams (see Figure 5-4). To identify interface errors,

Ada PDL is always compiled; developers use templates and a
language-sensitive editor (LSE) to standardize PDL structure.

Software Engineering Notebooks

A software engineering notebook (SEN) is a workbook (i.e., a file

folder or special notebook) that facilitates quality assurance and

configuration management by consolidating printed information
pertinent to a software component. This information becomes more

detailed as the life cycle progresses. When printed documentation is

combined with online source files in later phases, the SEN provides

a baseline history of an element's evolution through the development

process.

During preliminary design, developers initiate SENs at a subsystem

or logical function level. Into these SENs they collect notes

documenting design decisions, design diagrams, structure charts,
and signed design inspection checklists for the subsystem or

function. SENs are usually maintained by developers until after unit

testing, when they are turned over to the project librarian.

J

L

i

w_

!

E

IE

!

IE

,-____

74 '|

Section 5 - Preliminary Design

T

Design Walk-Throughs

Developers conduct design walk-throughs to ensure that both the

requirement_i definition and development teams understand the

system design as it takes shape. Developers distribute materials

prior to the walk-through to participants, who include other
developers, analysts, user representatives, representatives of

systems that will interface with the software under development, and
managers. During the meeting, developers carefully explain how

operational aspects of the system (processing sequences and
interfaces, screen formats, and user inputs) are reflected in the

emerging design. Participants comment on how completely and
accurately developers have interpreted the system requirements. A

recording secretary notes discrepancies, errors, and inconsistencies
and records action items. If significant issues remain at the end of

the walk-through, a follow-up session may be scheduled.

The initial walk-through typically presents the overall, system level

approach and is later followed by walk-throughs of subsystems and
their major parts. When a project is large and the development team

has been partitioned into groups, it is important that the group leader

of any subsystem that interfaces with the subsystem being presented
attend the session.

Design Inspections

(.on
f[iesign inspectionsare conducted during TM

both the preliminary and detailed design •
phasesbecausedifferent units are
designed in each phase. If a unit design
was inspected and certified during the
preliminary design phase, it is not re-
inspected during the detailed design
phaseunless it has been revised. See
METHODS AND TOOLS in Section 6 for a
detailed description of design inspection

%procedures. j

Whereas design walk-throughs focus on

explaining operational aspects of the system

design, design inspections are independent, in-

depth, technical reviews of the design

diagrams, prologs, and PDL that are
performed by software team peers.

Inspections are held as logically related parts

of the system design become clear and
complete; they are scheduled when unit

prologs and PDL have been generated to the
required level. Developers distribute these
materi',ds for study by the inspection team prior

to holding a working meeting.

An inspection team consists of three or more members of the
development team who are versed in the project's standards,

development language, and system requirements. One member of
the team acts as the moderator for the meeting.

75

Section 5 - Preliminary Design

Inspection team participants certify that unit logic and interfaces

accurately represent the system requirements and that developers
have applied correct design principles. Reviewers document their

assessment and note weaknesses or interface conflicts on design

inspection checklists (Figure 6-3). The signed checklist also

certifies that the unit follows prescribed project standards and
conventions.

Reuse Verification

Reuse verification is the process of determining which of the

existing software components specified in the reuse proposal should

be integrated into the new system design. During reuse verification,
developers examine code and documentation from sources such as

the FDF's Reusable Software Library (RSL). Developers draw on

their experience in considering the integrity of the overall system
architecture, the clarity of the design, and system performance.

When the reuse plan recommends using large portions of existing
systems, developers must assess the trade-offs of compromising an

optimum system design to make it compatible with existing
software. They must consider long-term impacts on total software

development costs, design clarity, performance requirements,

system size, maintainability, and reliability when weighing design
options.

When factors (such as incompatible language versions or a high

incidence of operating system-specific calls) prohibit an existing
component from being reused, developers can study the software

and its documentation to understand its function, organization, and

data structures before designing a component compatible with the

new system. Thus, reused experience is shared across projects even
when explicit design and code cannot be.

Analysis Methods: Prototyping, Performance Modeling, and

Code Analysis

During preliminary design, the development team uses prototyping

to validate design concepts and to test the trade-offs of design

options. Developers compose prototype drivers (or scaffolding
code) to exercise components planned for reuse in the new system.

They also prototype user screens and report formats. To confirm

that existing components will meet the new system's performance
requirements, developers couple prototyping with performance and
source code analysis, as described below.

design

inspection
checklists

I

I[

t

,r
=

!

t_

=

=

i

_L--

units

designed

Section 5 - Preliminary Desi_ln,

Performance modeling is a means of predicting how efficiently a
program will use resources on a given computer. To generate these

predictions, developers use such parameters as the number of units
anticipated, the volum_ and frequency of the data flow, memory

usage estimates, and the amount of program I/O. Analogy with

existing, similar systems may also be used. Results of performance
modeling assist developers in deciding among design options.

If executable code exists (e.g., scaffolding code or reused units),

developers can run performance analyzers, such as Problem

Program Evaluator (PPE) or the VAX Performance and Coverage

Analyzer, concurrently with the code. These dynamic analyzers

generate information such as CPU time, I/O counts, and page fault

data that help developers identify areas of the code (e.g., inefficient
loop structures or calculations) that need to be redesigned.

Static code analyzers (e.g., VAX Source Code Analyzer) are tools

that read the source code of existing components and generate

information describing their control structure, symbol definitions,
and variable occurrences. A developer can examine the call trees

produced by a static code analyzer to assess the scope of a proposed
change to a reusable component's interfaces. The designer can then

decide which approach is better- to modify and test all affected
units or to design a new component.

MEASURES

During preliminary design, managers continue to use the objective

measures of the requirements analysis phase. They also begin to

monitor additional progress data. The following measures are
collected:

• The number of units designed versus the number identified

• Requirements questions and answers, TBDs, and changes
• Staff hours

• Estimates of system size, effort, schedule, and reuse

The source of these data and the frequency of data collection and
evaluation are shown in Table 5-I

Evaluation Criteria

Project leaders estimate the number of units that will be needed to

represent the preliminary system design. Against this estimate, they

track the number of unit designs (prolog and PDL) that have been

generated and the number certified. Management plots assist in

77

Section 5 - Preliminary Desi_ln

Table 5-1. Objective Measures Collected During the Preliminary Design Phase

MEASURE

Staff hours (total and
by activity)

Requirements (changes
and additions to

baseline)

Requirements (TBD
specifications)

Requirements
(questions/answers)

Estimates of total SLOC
(new, modified, mused),
total units, total effort,
and schedule

Status (units planned/
designed/certified)

SOURCE

Developers and
managers
(via PRFs)

Managers
(via Development
Status Forms (DSFs))

Managers
(via DSFs)

Managers (via DSFs)

Managers (via PEFs)

Managers (via DSFs)

FREQUENCY

(COLLECT/ANALYZE_

Weekly/monthly

Biweekly/biweekly

Biweekly/biweekly

Biweekly/biweekly

Monthly/monthly

Biweekly/biweekly

DATA COLLECTION

CONTINUED BEGUN

(total units)

t

discovering trends or plateaus in this progress
data that signal impending difficulties. The

graph of units certified should closely follow
and parallel the graph for units designed in a

fairly smooth curve. Sharp increases (a "stair-

step" graph) will appear when many units are
hurriedly certified together in an effort to meet
schedules.

During preliminary design, a widening gap
between the number of requirements questions
submitted and the number of answers received

can be an early warning signal of impending
rework and eventual schedule slippage. A

high number of questions and answers when

compared with systems of similar size and

complexity is interpreted the same way.

,.(.OLE "/
The number of units designed
should not be used as a measure
of unit completion. The correct
completion measure is the number
of certified unit designs.

requirements

questions

and answers

Tracking the number of TBD requirements that persist into the

preliminary design phase, especially those concerning external
interfaces and hardware changes, is crucial because TBDs represent

TBD requirements

78

requirements

changes

.(
Numbers of Q&As, TBDs, and
specification modifications can

change rapidly. Plots of these

factors help managers to assess

project status and

staff hours

f NOTE "_

f'SEL managers update effort, schedule,

| and size estimates approximately once

J a month and organize these estimates

| on the Project Estimates Form (PER.

| Data from these forms are used to

L g_ot:rate system growth and progress

estimates

_(NOTE

Although a number of measures of

design quality (strength, etc.) have
been proposed, the SEL has not

yet found objective measures that

provide significant insight into the

quality of a design.

Section 5,. preliminary Desi_ln

incompleteness in the design and increase the
potential for rework. TBDs should diminish

quickly in the early life cycle phases.

Specification modifications may be issued in

response to development team questions or
external project influences such as hardware

changes. The number and severity of

specification modifications resulting from

developers' questions reflect the quality of the
requirements and specifications document.

These changes are normally addressed by the

development and requirements definition teams.
The number and severity of specification
modifications from external causes have more

far-reaching implications and should alert

managers to anticipate long-term perturbations in
schedule and effort estimates.

Significant deviations between planned and
actual staff effort hours warrant close

examination. When a high level of effort is

required to meet schedules, the development

team's productivity may be low or the problem
may be more complex than originally realized.

Low staff hours may indicate delayed staffing on

the project or insufficient requirements analysis.
The effects of these last conditions are not

always immediately obvious in preliminary

design, but will surface dramatically as design
deficiencies during subsequent phases.

Managers can now use the number of units

planned and average unit size to refine estimates
of system size. The number of reused units in

the system also becomes firmer; managers

identify units to be reused without change versus
those to be modified and revise effort and

schedule projections accordingly.

Estimates are a key management measure; widely

varying estimates or sharp increases always

warrant investigaiion. In the preliminary design
phase, excessive growth in system size estimates

is generally seen when requirements are unstable
or change control mechanisms are ineffective.

79

Section 5 - Preliminary Desi_ln

II

PRODUCTS

The primary product of the preliminary design phase is the high-
level design of the system, as documented in the preliminary design

report. The report incorporates the results of reuse verification and

prototyping and forms the basis for the detailed design document.
Because of their size, unit prologs and PDL are normally published

in a separate volume that is identified as an addendum to the report.

An outline of the preliminary design report, showing format and

content, is provided as Figure 5-5.

PREUMINARY DESIGN REVIEW

The phase concludes with the preliminary design review (PDR),
during which the development team presents the high-level system
design and the rationale for choosing that design over alternatives.
Also highlighted in the PDR are explanations of external system
interfaces, revisions to operations scenarios, major TBDs for
resolution, and issues affecting project quality and schedule.

Materials presented at PDR do not necessarily convey the technical
depth that the development team has achieved during preliminary
design; details of this technical effort are documented in the
preliminary design report. Developers limit the PDR presentation to
the nominal operating scenarios and significant contingency cases.

The presentation is directed to project managers, users, the
requirements definition team, and the CCB. Applications
specialists, analysts, quality assurance personnel, and managers
perform a detailed technical review of the preliminary design
material prior to attending the formal review. They evaluate the
system design and provide comments and critiques to the
development team during and immediately after the presentation.
RIDs are used by participants to record any issues that still need to
be resolved. The PDR format and schedule are shown in Figure
5-6, followed by an outline of the PDR hardcopy materials (Figure

5-7).

80

Section 5 - Prelim!nary Des_n

PRELIMINARY DESIGN REPORT

This report is prepared by the development team as the primary produc:t of the preliminary design
phase. It presents the high-level design of the system and forms the basis for the detailed design
document. The suggested contents are as follows:

1. Introduction m purpose and background of the project, overall system concepts, and
document overview

2. Design overview

a. Design drivers and their order of importance (e.g., performance, reliability, hardware,
memory considerations, operating system limitations, language considerations, etc.)

b. Results of reuse tradeoff analyses; the reuse strategy
c. Critique of alternative designs
d. Discussion and high-level diagrams of the selected system design, showing hardware

interfaces, external data interfaces, interconnections among subsystems, and data flow
e. A traceability matrix of the subsystems against the requirements
f. Design status

(1) List of constraints, concerns, and problem areas and their effects on the design
(2) List of assumptions and possible effects on design if they are wrong
(3) List of TBD requirements and an assessment of their effect on system size, required

effort, cost, and schedule
(4) ICD status

(5) Status of prototyping efforts
g. Development environment (i.e., hardware, peripheral devices, etc.)

3. Operations overview

a. Operations scenarios/scripts (one for each major product that is generated). Includes the
form and volume of the product and the frequency of generation. Panels and displays
should be annotated to show what various selections will do and should be traced to a
subsystem

b. System performance considerations
c. Error recovery strategies (automatic fail-over, user intervention, etc.)

4. Design description for each subsystem or major functional breakdown:
a. Discussion and high-level diagrams, of subsystem, including interfaces, data fi0w, and

communications for each processing mode
b. High-level description of input and output
c. High-level description of processing keyed to operator-specified input and actions in

terms of points of control, functions performed, and results obtained (both normal and
abnormal, i.e., error processing and recovery)

d. Structure charts or object-oriented diagrams expanded to two levels below the
subsystem driver

e. Prologs (specifying the unit's purpose, operation, calling sequence arguments,
external references, etc.) and program design language (PDL) for each identified unit
(Prologs and PDL are normally published in a separate volume.)

5, Data interfaces for each internal and external interface:

a. Description, including name, function, frequency, coordinates, units, and computer type,
length, and representation

b. Format

(1) Organization, access method, and description of files (i.e., data files, tape, etc.)
(2) Layout of frames, samples, records, and/or message blocks
(3) Storage requirements

Figure 5-5. Preliminary Design Report Contents

gl

Section 5 - Preliminary Desi_ln

PDR FORMAT

Presenters -- software development team

Participanl=
• Requirements definition team
• Quality assurance representatives from both teams
• Customer interfaces for both teams
• User representatives
• Representatives of interfacing systems
• System capacity/performance analysts
• CCB

Schedule -- after the preliminary design is complete and
before the detailed design phase begins

Agenda _ selective presentation of the preliminary design
of the system

Materials Distribution
• The preliminary design report is distributed at least 1 week before

PDR
• Hardcopy material is distributed a minimum of 3 days before PDR

Figure 5-6. PDR Format

Exrr CRrTERL_

To determine whether the development team is ready to proceed with

detailed design, managers should ask the following questions:

• Have all components that are candidates for reuse been

analyzed? Have the trade-offs between reuse and new

development been carefully investigated?

• Have developers evaluated alternate design approaches and

chosen the optimum design?

• Have all design diagrams, prologs and PDL (or package

specifications, if applicable) been generated to the prescribed
level? Have they been inspected and certified?

Have the key exit criteria been met? That is, has the preliminary

design report been produced and distributed, has the PDR been
successfully completed, and have all PDR RIDs been answered?

When the manager can answer "yes" to each of these questions, the

preliminary design phase is complete.

=

82

Section 5 - Preliminary Desi_ln

HARDCOPY MATERIAL FOR THE PDR

1. Agenda -- outline of review material

2. Introduction E background of the project and system objectives

3. Design overview
a. Design drivers and their order of importance (e.g., performance, reliability, hardware,

memory considerations, programming language, etc.)
b. Results of reuse tradeoff analyses (at the level of subsystems and major components)
c. Changes to the reuse proposal since the SSR
d. Critique of design alternatives

e. Diagram of selected system design. Shows products generated, interconnections among
subsystems, external interfaces. Differences between the system to be developed and
existing, similar systems should be emphasized

f. Mapping of external interfaces to ICDs and ICD status

4. System operation

a. Operations scenarios/scripts E one for each major product that is generated. Includes
the form of the product and the frequency of generation. Panels and displays should be
annotated to show what various selections will do and should be traced to a subsystem

b. System performance considerations
c. Error recovery strategies

5. Major software components _one diagram per subsystem

6, Requirements traceability matrix mapping requirements to subsystems

7. Testing strategy
a. How test data are to be obtained
b. Drivers/simulators to be built

c. Special considerations for Ada testing

6, Design team assessment _ technical risks and issues/problems internal to the software
development effort; areas remaining to be prototyped

9. Software development/management plan -- brief overview of how the development
effort is conducted and managed

1G Software size estimates -- one slide

11. Milestones and schedules--one slide

12. Issues, problems, TBD items beyond the control of the development team
a. Review of TBDs from SSR
b. Other issues

c. Dates by which TBDs/issues must be resolved

Figure 5-7. PDR Hardcopy Material

83

II IIIIiill lii,ldl I , _ILJ I Ill _i I_ lildll i _ll_l] i_ I

c_

"I
I

...... _ _ i,h _ ,,t i i, ,a, ,M ill J i mulqI_11i _lll IIi ,d n iiiidl anmI ,111lllnl li ap I IIII ,ll g IIIII ilmllllh m| IIIIII gl H _1_IN I|l|_ ,111 all U I _11III J

Section 6 - Detailed Desiqn

MRE
CYCtJE
PHA,Sr=S

DETAILED _ _i_::_M_!_::::::::ii::::!::::i::::!_I _:_i:_i_: 1A_
DESIGN I :_i i _ I TESTiNG;_ :! I ; TESTING. i

SECTION 6

THE DETAILED DESIGN PHASE

PHASE HI(

ENTRY CRITERIA

• Preliminary design report generated
• PDR completed
• PDR RIDs answered

i1=,..._

-- EXIT CRITERIA

• Detailed design document generated
• CDR completed"
• CDR RIDs answered

PRODUCTS

• Detailed design document
• Build plan"
• Build/release test plan*

MEASURES

• Units designedAdentified
• Requirements Q&As, TBDs, and changes
• Staff hours
• Estimates of system size, effort,

schedule, and reuse
• CPU hours

METHODS AND TOOLS

• Functional decomposition and
object-oriented design

• Reuse verification
• Analysis methods
• Design walk-throughs
• Design inspections
• Prologs and PDL
• SENs

KEY ACTIVITIES

Development Team
• Prepare detailed design diagrams
• Conduct design walk-throughs
• Refine the operational scenarios
• Complete prologs and PDL for all units
• Provide input to the build plan and begin

the build/release test plan"
• Prepare the detailed design document
• Conduct the CDR

Management Team
• Assess lessons learned from the
preliminary design phase

Control requirements changes
Control the.quality of the design process .

• Prepare the build plan
• Coordinate the transition to implementation
• Direct the CDR

Requirements Definition Team
• Resolve remaining requirements issues
• Participate in design walk-throughs and

CDR

Acceptance Test Team
• Begin work on the acceptance test plan
• Prepare portions of analytical test plan

needed for Build 1

PRECED!N.G F_,_;_EBL_ NOT F:Li,hEO
85

Section 6 - Detailed Desi_ln

OVERVIEW

The purpose of the detailed design phase is to produce a completed

design specification that will satisfy all requirements for the system
and that can be directly implemented in code.

Unless comments expressed at the PDR indicate serious problems or
deficiencies with the preliminary design, detailed design begins

following the PDR. The detailed design process is an extension of

the activities begun during preliminary design. The development
team elaborates the system architecture defined in the preliminary

design to the unit level, producing a complete set of code-to
specifications. The primary product of the phase is the detailed

design document, which contains the design diagrams, prologs, and
PDL for the software system.

During this phase, the development team conducts walk-throughs of
the design for the requirements definition team and subjects each

design specification to peer inspection. At the conclusion of the

phase, the completed design is formally reviewed at the CDR.

Figure 6-1 shows the major processes of the detailed design phase.

K_g'YA_WWmES

While the development team is generating the detailed design, the

requirements definition team continues to resolve the remaining

requirements issues and TBDs. As soon as requirements questions

and changes level off, an additional team is formed to prepare for
acceptance testing. This acceptance test team usually consists of the

analysts who will use the system, along with some of the staff who

prepared the requirements and specifications document.

The activities of the development team, the management team, the

requirements definition team, and the acceptance test team are
itemized below. A suggested timeline for the perfomaance of these

activities is given in Figure 6-2.

Activities of the Development Team

• Prepare detailed design diagrams to the lowest level of detail,
i.e., the subroutine/subprogram level. Successively refine each

subsystem until every component performs a single function and
can be coded as a single unit.

86

Section 6- Detai!ed Desi_ln

i

PREUWNARY DESIGN REPORT

EUdlOP.ATE

SYSTEM

ARCHITECTURE

REQUIREMENTS

DEFINITION

'rEAM

REFINED

OPERATIONAL

SCENARIOS

UPDATI"D REQUIREMENTS AND SPECIFICATIONS

DOCUMENT

PREPARE

DOCUMENT

6.4

1 WALK-THROUGH

INFO

GENERATE

IROLOGS AND PDL

(ALL UNITS)

6.2 O PDL\
UNK5 TO RSL /

&,.
_MODIFIED PR_OGS AND PDL

DETAILED DESIGN DOCUMENT

REUSABLE SOFTWARE UBRARY

NOTE: The processes labelled 6.1, 6.2, and 6.3 are described in the

KEY ACTIVITIES subsection, The detailed desi{)n document is

covered under PRODUCTS. A separale subsecuon describes the

format and contents of the CDR.

mOS AND

RESPONSES

CDff

PRESENTA_ON

CONDUCT

C_CAL

DE_ON

RENEW

HARDCOPY MATEPJALS

Figure 6-1. Generating the Detailed Design

Conduct design walk-throughs. Walk through each major function or object with
other developers and the requirements definition team. On small projects (e.g.,

simulators), conduct one walk-through per subsystem. On systems of 150 KSLOC or

more (e.g., AGSSs), hold two walk-throughs per subsystem -- one in the early stages
of detailed design and one later in the phase.

Refine the operations scenarios for the system in light of the results of prototyping,
performance modeling, and design activities. Finish specifying detailed input and

output formats for each subsystem, including displays, printer and plotter output, and
data stores.

87

Section 6 - Detailed Desicjn

REQUIREMENTS
DEFINITION
TEAM

SOFTWARE
DEVELOPMENT
TEAM

ACCEPTANCE
TEST
TEAM

MANAGEMENT
TEAM

Answer developer questions; resolve requirements issues, TBDs

Participate in design watk-throughs

Participate in CDR

Complete all prototyping
V

Refine operational scenarios

Finalize design diagrams

Conduct design walk-throughs

_v

V
Prepare all prologs and PDL

Conduct design inspections

NOTE: Dashed lines indicate
that the'activity is intermittent

__37

"V

Prepare detailed design report

Prepare build test plan

Prepare and conduct-_

Resolve CDR RIDs

Begin to prepare the acceptance test plan

V
Plan analytical tests for Build 1

Record project history data, reassess schedules, staffing, resources

Plan and control requirements changes; control quality

Prepare build plan _r

Update SDMP estimates

Direct the CDR

Coordinate the transition to implementation

V V
CDR

TIME "_

Figure _2. 7;meline of Key Activities in the Detailed Design Phase

88

Section 6 - Detailed Desi_ln

Complete all prototyping efforts. The detailed design presented
at CDR should contain no uncertainties that could have been

resolved through prototyping.

Complete prologs and PDL for all units. Generate prologs and
PDL for the new units specified in the design diagrams. On Ada
projects, package specifications and PDL should also be

compiled. This means that package bodies are compiled, and
that, at a minimum, subprogram bodies each contain a null
statement.

Identify all units (from the RSL or other sources) that will be

reused, either verbatim or with modifications. Transfer existing
units that require modification into online libraries, and revise

the prologs and PDL of these units as necessary.

Ensure that all unit designs are formally inspected and certified

(see Methods" and Tools below). File the completed checklist in
the SEN for the unit.

Provide input to the build plan and begin the build test plan.
Provide the technical information needed for the build plan to the
management team; include the order in which units should be

implemented and integrated. Prepare the test plan for the first

build and review it at CDR. (See Section 7 for the plan's format
and contents.)

Prepare the detailed design document as a basis for the CDR.

Ensure that the team librarian adds all documentation produced

during the phase to the project library. (The only exceptions are
SEN materials, which are maintained by individual developers
until the unit has been coded and tested.)

• Conduct the CDR and respond to all CDR RIDs.

Activities of the Management Team

With a few exceptions, the activities of the management team during
the detailed design phase parallel those of the previous phase.

Assess lessons learned from the preliminary design phase
and record information for the software development history,
including schedule data and project statistics. Reassess

schedule, staffing, and resources in view of these data.

• Control requirements changes. Continue to monitor the
number and scope of requirements questions and answers.

89

Section 6 - Detailed Desi_ln

Ensure that analysts and the customer understand the potential

impact of each requirement TBD and proposed specification
modification.

Control the quality of the detailed design process and its

products. Ensure adherence to design standards, configuration
management procedures (especially change control), reporting

procedures, data collection procedures, and quality assurance

procedures. Review the design produced and participate in

design walk-throughs.

Ensure that all facets of the project are completely visible and

that there is close cooperation between the development team and

the other groups with which they must interact.

Prepare the build plan. Use unit dependency information

provided by the technical leads and application specialists of the

development team to specify the portions of the system that will
be developed in each stage of the implementation phase.

Document the capabilities to be included in each build and

prepare a detailed milestone schedule, factoring in external
constraints and user needs.

Coordinate the transition to the implementation phase. It is

usually necessary to increase the size of the development team to
simultaneously implement multiple subsystems within a build.

Inform the development team of the software engineering

approaches to be used during implementation and provide the
necessary training. Ensure that members of the development
team understand the code and testing standards, and the quality

assurance and configuration management procedures to be
followed.

Ensure that online project libraries are established, that strict

change-control procedures concerning these libraries are
followed, and that the necessary software for building and

testing the system is made available so that developers can begin

implementation immediately ',ffter the CDR.

• Direct the CDR. Schedule and participate in the review, and

ensure that all pertinent groups take part.

Activities of the Requirements Definition Team

Resolve any outstanding requirements issues and TBDs,

preparing specification modifications as necessary. Warn

developers of any impending changes to requirements so that

90

Section 6 - Detailed Desi_ln

they can plan design activities accordingly. Respond to
developers' questions.

Participate in design waik-throughs and the CDR. Review the

detailed design document before CDR. During the review,
provide a critique of the design. Use RIDs to document issues
and discrepancies.

Activities of the Acceptance Test Team

Begin work on the acceptance test plan (Section 8) as soon as
requirements have stabilized. Requirements can be considered

as stable when developers are no longer submitting new
requirements questions and the number of TBDs has declined to
a low level.

Prepare the portions of the analytical test plan that are

needed for Build 1 (see Section 7). Meet with the development

team to determine which analytical tests will be needed during
the first build of the implementation phase, and complete those
portions of the analytical test plan.

METHODS AND TOOLS

The same methods and tools used during the preliminary design
phase continue in use during detailed design:

• Functional decomposition and object-oriented design (OOD)
• Reuse verification

• Analysis methods: prototyping, performance modeling, and
code analysis

• Design walk-throughs

• Design inspections
• Prologs and PDL
• SENs

During the detailed design phase, the development team uses

functional decomposition or OOD techniques to take the design
diagrams down to the lowest level of detail (see Figures 5-3 and
5-4). Prototyping and performance modeling efforts that were

undertaken to address design issues are completed. The team also
completes its examination of the code and documentation of reusable

components to determine whether each unit can be incorporated into
the system as planned.

91

Z

Section 6 - Detailed Desi_ln

The other methods and tools that continue in use from the

preliminary design phase m design walk-throughs, design

inspections, prologs and PDL, and SENs -- have new aspects or

applications that are introduced during detailed design. These are
discussed in the paragraphs that follow.

Design Walk-throughs

During the detailed design phase, one or two

design walk-throughs are held for each
subsystem. Participants include members of

the development team, the requirements
definition team, representatives of systems
that will interface with the software under

development, and managers. At these walk-

throughs, members of the development team

step through the subsystem's design,
explaining its algorithms, interfaces, and

operational aspects. Participants examine and

question the design at a detailed level to
uncover such issues as mis-matched

interfaces, contradictions between

algorithms, or potential performance

problems.

The design of the user interface is specifically
addressed in one or more additional walk:

throughs. These sessions are attended by the

future users of the system and concentrate on

the users' point of view. The users learn

how the system will look to them under

representative operational scenarios, give
feedback to developers, and provide a "reality

check" on the updated requirements and

specifications. Problems encountered with

the specifications are documented on

question-and-answer forms and submitted to
the requirements definition team for action.

] Design walk-throughs andinspections are initiated
during the preliminary design
phase. Section 5 defines
both inspections and
walk-throughs and explains
the differences between the
two methods.

f.(TAILORING NOTE

Separate, formalized design
walk-throughs are not always held
on small tool development efforts.
On these projects, walk-throughs
may be combined with design
reviews. The reviews are generally
informal, since the products being
examined will not be put under CCB
control, and focus on system
operability and the user interface.

Design Inspections

Design inspections are the key methodology of the detailed design

phase. Because the CDR is conducted primarily for the benefit of

management and users, a detailed, component-by-component review
of the design takes place only during design inspections. It is

during these inspections that each separate design product is
examined for correctness, completeness, and comprehensibility.

=

I

92

Section 6 - Detailed Desi_ln

Design inspections are always conducted, regardless of the size or
type of the project.

At a minimum, the inspection team consists of the moderator, the

design's author, and another member of the development team.
Units that require detailed knowledge of the application (such as the

physics of flight dynamics) are inspected by the development team's
application specialist.

On large projects, two or more of the author's peers will inspect the

design and a representative from the quality assurance office may be
included. Leaders of teams that are developing subsystems that

interface with the components being inspected should also attend.

Each inspection session covers a set of logically related units (5 to
10 on average), for which design diagrams and unit-level PDL and

prologs have been completed. Copies of the materials to be
inspected are distributed to members of the inspection team several
days before the session.

RULE
f

Every unit is important to the
developing system and each new or

modified unit must be reviewed with

equal thoroughness. Neglecting a
unit because it is reused software, it is
not part of a "critical" thread, or its
functions are "trivial" can be

disastrous.

Each member individually reviews the materials

for technical content and adherence to design
standards, and comes to the inspection session

prepared to comment on any flaws he or she has
uncovered. The moderator records the errors,

resolves disagreement, and determines whether

reinspection is necessary. The author answers
questions and takes action items to resolve the

flaws that are identified. All participants are
responsible both for finding errors and for

ensuring that designs are traceable to
requirements.

Design inspection checklists, such as the one

shown in Figure 6-3, are distributed to reviewers

with the inspection materials to remind them of
key review criteria. A master checklist is

compiled by the moderator and is used to certify
the unit when inspection is complete.

Compiled Prologs and PDL

During the detailed design phase of an Ada project, the development
team generates and compiles all PDL for the system. For this work,

and for the code and test activities of subsequent phases, developers
in the STL use sets of tools and utilities that are part of an Ada
software development environment.

93

Section 6 - Detai!ed Design , _

li

UNIT DESIGN INSPECTION CHECKLIST

Unit Name

Task Number

Inspection Moderator,

System Build/Release
Initial Inspection Date

KEY INSPECTION QUESTIONS

1. Does the design present a technically valid way of achieving the

unit's assigned function7

2. Is all data required by the unit available and defined?

3. Is the dependency between each input and output argument and

the processing apparent in the design?

4. Is it clear from the design where the outputs from the unit are

generated?

5. Is the dependency between each external reference (e.g., unit

file, record) and the processing apparent in the design?

6. Does the design include the necessary error detection and

recovery logic?
7. Is the design, as written, sufficient to handle the upper and

lower bounds associated with unit inputs (especially arguments)?

Yes No Corrected

[] [] []

[] [] []

[] [] []

[] [] []

[] [] []

[] [] []

[] [] []

ADDITIONAL INSPECTION QUESTIONS

8. Are the prolog and PDL consistent with the unit's design diagram7 []

9. Does the PDL define logic as opposed to code7 []

10. Does the proiog contain enough information to describe the unit
clearly to the unfamiliar reader? []

11. Do both the prolog and PDL conform to applicable standards? []

[] []
[] []

[] []
[] []

ACTION ITEMS AND COMMENTS

(List on a separate sheet. Refer to questions above by number.)

INSPECTION RESULTS
1. If all answers to 1-11 were "Yes, " the unit's design passes. Check

here and sign below.
2. If there are serious deficiencies in the design (e.g., if more than one

key question was answered "No') the author must correct the unit

design and the moderator must schedule a reinspection.
Scheduled date for reinspection:

3.

[]

If there are minor deficiencies in the design, the author must correct

the unit design and hold a followup meeting with the moderator.

Scheduled date for followup meeting:

Moderator's signature certifies that this unit meets all applicable standards and satisfies

its requirements, and that any identified deficiencies have been resolved (applicable at

initial inspection, followup meeting, or reinspection).

Moderator signature: Date

Figure & 3. Checklist for a Unit Design Inspection

94

Section 6- Detailed Desi_ln

DEFINITION "_
fin Ada, the term program library refers •

not to a library of programs, but to a
library of compilation units that comprise
one or more programs. To detect
consistency errors before an entire
program is constructed, the Ada compiler
cross-checks information from separately
compiled units. The program library is
the mechanism bywhich the compiler
retains the information needed to perform
these checks efficiently.

The Ada development environment provides a
program library manager that functions as the

user interface to the Ada compiler and the linker.

The program library manager keeps track of

which compilation units are in the library, when
they were compiled, which ones have been

made obsolete by more recent compilations, and
the dependencies among units.

The development environment also includes a
language-sensitive editor (LSE). The LSE

provides a template for the Ada language that
allows developers to enter and edit prologs and

PDL interactively.

Ada developers use an additional tool to expedite the generation of

package bodies. This utility reads a "bare-bones" package

specification, enhances it to conform to local Ada styles (see

Reference 22), and uses the specification to build templates for the
package body and subprograms.

The other components of the Ada development environment are used

primarily during the implementation phase of the life cycle and are
described in Section 7.

Software Engineering Notebooks (SENs)

DEFINITION

Throughout this document, the
term "module" is used to
denote a collection of logically
related units. In the flight
dynamics environment, a
module usually consists of 5 to
10 units.

,(TAILORING NOTE "_

On Ada projects, one SEN is
used to store documentation
for each package. That is. the
current listings, inspection
checklists, end relevant design
diagrams for the package's
specification, body, and
subprograms are maintained
together in a single notebook.

By the end of the detailed design phase, the
development team's librarian will have created

a SEN for each unit and/or module in the

system. The developer uses the SEN to store

all documentation that pertains to a unit,

including the current listing of the unit's prolog
and PDL, the unit design inspection checklist,

design diagrams, and notes documenting
design decisions. Through unit code, test, and
integration, each developer retains the SENs

for the units for which he or she is responsible.

When the units in a module have been coded,

tested, and certified, they are ready to be placed

under configuration management; at this point,
the developer gives the SENs to the librarian

who files them in the project library.

95

Section 6 - Detailed Desi_ln

MEASURES

Objective Measures

The objective measures used during the preliminary design phase are

also the yardsticks used for detailed design, with one addition --
CPU hours. The measures to be collected are as follows:

• The number of unit designs that have been certified versus the

number identified

• Requirements questions and answers, TBDs, and changes
• Staff hours

• Estimates of system size, effort, schedule, and reuse
• Total CPU hours used to date

The source of these data and the frequency of data collection and

evaluation are shown in Table 6-1. The paragraphs that follow

provide specific recommendations for evaluating these measures
during detailed design, and supplement the guidance given in
Section 5.

Evaluation Criteria

The number of TBD requirements is a vital metric in this phase.

Ideally, all TBD requirements are resolved by the end of the phase.

If this goal is impossible to achieve, the management team must
assess how the remaining TBDs will affect system size, system

design, staff hours, costs, and schedule, and then evaluate the
feasibility of continuing. In the flight dynamics environment,

implementation should be postponed if "mission critical"

requirements remain unresolved or if more than 10 percent of the
total number of requirements are still TBD.

A large number of specification modifications in the detailed design

phase is usually an indication that requirements and specifications
are unstable or erroneous. The management team must assume that

the level of specification modifications will remain high throughout

the implementation and system test phases, and should reevaluate

system size estimates and schedules accordingly (Figure 6-4).

By the end of preliminary design, managers know the projected
number of units in the system. By the end of the detailed design

phase, all units to be reused will have been identified, along with the
degree of modification needed to incorporate them into the new

system. Managers can combine these new figures with productivity
rates from past projects to reestimate the effort hours and staffing

TBD requirements

requirements

changes

size and effort

estimates

96

Section 6 - Detailed Desi_ln

Table 6-1. Objective Measures Collected During the Detailed Design Phase

MEASURE

if if

Staff hours (total and

by activity)

Computer use (CPU

hours and runs)

Requirements (changes

and additions to

baseline)

Requirements (TBD

specifications)

Requirements

(questions/answers)

Estimates of total SLOC

(new, modified, reused),

total units, total effort,

and schedule

Status (units planned/

designed/certified)

SOURCE

Developers and

managers

l(via PRFs)

Automated tool

Managers

(via DSFs)

Managers

(via DSFs)

Managers (via DSFs)

Managers (via PEFs)

Managers (via DSFs)

FREQUENCY

(COLLECT/ANALYZE)

Weekly/monthly

Weekly/biweekly

Biweekly/biweekly

Biweekly/biweekly

Biweekly/biweekly

Monthly/monthly

Biweekly/biweekly

DATA COLLECTION

CONTINUED BEGUN

_r

_r

_r

_ Recent SEL studies have shown _
that the relative cost of reusing

existing units, as a percentage
of the cost to develop the unit

IF newly, is 20 percent for

FORTRAN projects and 30 percent for Ada

projects. The higher percentage for Ada is
correlated to a significantly greater

proportion of reused to new units on

these projects as compared with i

ORTRAN efforts. ,_

levels necessary to complete development.

(See Table 3-2 of Reference 12 for guidance
in computing these estimates.)

Near the end of the phase, size estimates can

balloon unexpectedly if many units are moved

from the "reused" to the "new" category.
Managers need to ensure that decisions to

create new units rather than reuse existing

ones are justified and not merely a
manifestation of the NIH ("not invented
here") syndrome.

computer

use

Computer use, as expressed in CPU hours or the number of

sessions/job runs, is a key indicator of progress during design and
implementation. On a typical flight dynamics project, a small

amount of CPU time should be recorded during the design phases as
the development team conducts prototyping efforts and enters PDL.

Because Ada PDL is compiled, more CPU time should be logged on
Ada projects.

97

Section 6 - Detailed Desi_ln

300000

26O000i,
14O000

100000

I I

Management esumate I I

of totaJsystem s_ze I I

'SEL model for growth in

1
I
I
1

1 Warning sign -- size I
J es_mates wandering clue t0 J

I / ,,ns_blerequirements J
I t I

Symptom: Size estimates
increase then drop during
detailed design.

Cause: Excessive
requirements changes and
ineffective change control
mechanisms. Requirements
that were deleted from
specifications had to be
restored during the
implementation phase.

Corrective Actions: Assume

that the instability of
requirements will lead to a
high level of specification
modifications during
implementation and testing.
Analyze risks, replan size
estimates accordingly, and
request additional budget.

NO.T.E; In the SEL environment, a large number of TBDs in the requirements and specifications,
combined with a substantial number of requirements changes, typically cause a system to grow
up to 40 percent larger than is estimated at the time of PDR. As the details of the unknown
portions of the system become clear, the size estimate grows more rapidly. The range of
accepted growth (shown in grey) narrows as the system becomes more defined.

Rgure 6-4. Example of the Impact of Requirement_ Changes on Size Estimate$

the UARS Attitude Ground Support System

A lack of CPU hours on a project that is three-quarters of the way

through the detailed design phase should raise a red flag. The
management team should investigate to determine whether the team
is avoiding using the computer because of inadequate training or is
mired in redesign as a result of specification modifications.

PRODUCTS

The development team's primary product for this phase is the

completed design for the system, including unit prologs and PDL,
as recorded in the detailed design document. In addition, the

management team produces a build plan for implementing the
design, and the development team begins to develop build test plans.

These products are described in the paragraphs that follow.

=

|

98

Section 6 - Detailed Desi_ln

Detailed Design Document

During the detailed design phase, the preliminary design report is
expanded and refined to reflect the results of detailed design
activities. Before CDR, this detailed design document is completed
and distributed for review. The format and contents of the

document are shown in Figure 6-5.

The Build Plan

See SECTION 2 for definitions
of the terms build and
release and for guidance in
determining the number of
builds and releases that are
needed as a function of
project size.

_(NOTE)
Additional builds are required
on projects using Cleanroom
methodology. On Cleanroom
projects, a build should
consist of portions of the
software that can be readily
tested and integrated
together and should last no
more than 2 or 3 months,

The buildplan describes the strategy that will be

applied in constructing the system during the

implementation phase. The plan defines the
sequence in which software components are

coded and integrated into executable subsystems
and the order in which these subsystems are

combined into systems.

The plan usually contains three parts:

• An itemization of the capabilities that will be

provided in each build or release
• The rationale, including relevant constraints,

for providing specified capabilities in a

particular build
• The implementation schedule

A preliminary build plan is usually generated
during the preliminary design phase. During

detailed design, the build strategy is expanded
and refined until, at the conclusion of the phase,

the updated strategy is included in the SDMP and
presented for evaluation at the CDR.

Builds must be planned to accommodate user needs for operational

capabilities or intemaediate products. Plans must also allow for

fluctuating and TBD requirements. Initially, the development team

determines the optimum plan for implementing the system from a
technical viewpoint. The management team then analyzes the plan

and decides how it must be perturbed to accommodate the user,

external (e.g., mission) schedules, specification modifications, and
unknowns. Both the optimum and adjusted plans are presented at
CDR.

99

Section 6 - Detailed Design

DETAILED DESIGN DOCUMENT

This document is the primary product of the detailed design phase. To complete the document,
the development team updates similar material from the preliminary design report and adds
greater detail. The suggested contents are as follows:

1. Introduction -- purpose and background of the project, overall system concepts, and
document overview

2. Design overview
a. Design drivers and their order of importance
b. Reuse strategy
c. Discussion and high-level diagrams of the selected system design, showing hardware

interfaces, external data interfaces, interconnections among subsystems, and data flow
d. Traceability matrix of major components against requirements and functional

specifications
e. Design status

(1) List of constraints, concerns, and problem areas and their effects on the design
(2) List of assumptions and possible effects on design if they are wrong
(3) List of TBD requirements and an assessment of their effect on system size, required

effort, cost, and schedule
(4) ICD status

(5) Results of prototyping efforts
f. Development environment

3. Operations overview
a. Operations scenarios/scripts
b. System performance considerations

4. Design description for each subsystem or major functional breakdown:
a. Overall subsystem capability
b. Assumptions about and restrictions to processing in each mode
c. Discussion and high-level diagrams of subsystem, including interfaces, data flow, and

communications for each processing mode
d. High-level description of input and output
e. Detailed description of processing keyed to operator-specified input and actions in

terms of points of control, functions performed, and results obtained (both normal and
abnormal, i.e., error processing and recovery)

f. Structure charts or object-oriented diagrams expanded to the unit level,
showing interfaces, data flow, interactive control, interactive input and output, and
hardcopy output

g. Internal storage requirements, i.e., description of arrays, their size, their data capacity in
all processing modes, and implied limitations of processing

h. Detailed input and output specifications
(1) Processing control parameters, e.g., NAMELISTs
(2) Facsimiles of graphic displays for interactive graphic systems
(3) Facsimiles of hardcopy output

i. List of numbered error messages with description of system's and user's actions
j. Description of COMMON areas or other global data structures
k. Prologs and PDL for each unit (normally kept in a separate volume because of size)

5. Data interfaces--updated from description in preliminary design report (see Figure 5-5)

=

w_

L_

|

%

Figure 6-5. Detailed Design Document Contents

I00

L

Section 6 - Detailed Desi_ln

Each build should address a coherent subset of the requirements and

specifications and take three to five months to implement. Each
build should cover a set of completed units; that is, the build plan
should not require modifications or enhancements to individual units

during later builds.

(TAILORING NOTE

(TAILORING NOTE _ (cont.) •

(ri"ljlllj In the flight dynamics

I IlL|_J environment, the initial build
I BB_ • (B1) usually provides the core

"/LI capabilities needed in a function-

J_J ing system. Middle builds (B2 to
Bn-1) supply all critical

capabilities. The last build (Bn)
is restricted to "bells and

whistles" and problem fixes,

The build plans for flight dynamics

projects also include the dates by

which developers need to receive

unit-level, analytic test plans from the
acceptance test team. See SECTION 7
for detailed information about the

purpose and content of these plans.

The first build must be kept simple,
particularly if the development team

is unfamiliar with the development

environment or programming
language being used. The next

builds should address high-risk
specifications and critical software

capabilities, such as performance

requirements, major control

functions, and system and user
interfaces. The build strategy must

ensure that capabilities that can

have a major impact on the

software design are completed
early, so that any problems can be
handled while there is still time to

recover.

Since the last build will grow to include the

implementation of specification modifications

and the resolution of problems remaining from
earlier builds, it should be kept small in initial

planning. The next-to-last build, therefore, must

supply all crucial system capabilities. If
specification modifications that add new features

to the system are received during the
implementation phase, additional builds that

extend the phase may be needed to ensure that

existing builds can proceed on schedule.

Build Test Plans

As soon as a build has been defined, the development team can

begin to specify the tests that will be conducted to verify that the
software works as designed and provides the capabilities allocated to

the build or release. The development team executes the build test

plan immediately following integration of the build.

The test plan for the first build is defined during the detailed design
phase. Any modifications to the overall testing strategy that are made

as a result of defining this first test plan are presented at the CDR.

101

Section 6 - Detailed Desi_ln

Test plans for the remaining builds are generated during the

implementation phase.

The format and content of build test plans are described in Section 7.

CRmCAL DESIGN REVIEW

The detailed design phase culminates in the CDR. This review is

attended by the development team and its managers, the

requirements definition team and its managers, quality assurance

representatives, user representatives, the CCB, and others involved

with the system. Participants evaluate the detailed design of the

system to determine whether the design is sufficiently correct and
complete for implementation to begin. They also review the build

plan to ensure that the implementation schedule and the capabilities
allocated to the builds are feasible.

The emphasis at CDR is on modifications
p to requirements, high-level designs,

system operations, and development plans
made since the PDR. Speakers should

highlight these changes both on the slides
and during their presentations, so that they
become the focus of the review. The CDR

also provides an opportunity for the

development team to air issues that are of
concern to management, the mission project

office, quality assurance personnel, and the
CCB.

Figure 6-6 shows the recommended CDR
format. An outline and suggested contents

of the CDR hardcopy material are presented

in Figure 6-7. Note that material that was
covered at PDR is not presented again,

except as needed to contrast changes. For
this concise format to be effective,

participants must be familiar with the project
background, requirements, and design.

They should have attended the PDR and
studied the detailed design document before

the meeting.

TAILORING NOTE

For very large projects, a CDR

should be held for each major

subsystem and/or release in

order to cover all aspects of the

system and to accommodate

changing requirements. On such

projects, it is vital to have one
review, i.e., a System Design

Review, that covers the entire

system at a high level.

REUSE NOTE

l
At the CDR, developers present

statistics showing the number

and percentage of components to
be reused, and which of these are

drawn from the RSL. They also

present key points of the detailed
reuse strategy, identify any

changes to the reuse proposal
that have been made since PDR,

and describe new/revised reuse

tradeoff analyses.
/

Reviewers should address the following questions:

• Does the design satisfy all requirements and specificatiopu'?

102

J

g

Ii

11

I

w

Section 6 - Detailed Design

CDR FORMAT

Presenters _ software development team

Participants
• Requirements definition team
• Quality assurance representatives from both teams
• Customer interfaces for both teams
• User representatives
• Representatives of interfacing systems
• System capacity/performance analysts
• CCB

Attendees should be familiar with the project background, require-
ments, and design.

Schedule -- after the detailed design is completed and before
implementation is begun

Agenda _ selective presentation of the detailed design of the system.
Emphasis should be given to changes to the high-level design, system
operations, development plan, etc. since PDR.

Materials Distribution
• The detailed design report is distributed at least 10 days before the

CDR.
• Hardcopy material is distributed a minimum of 3 days before the

review.

Figure 6-6. CDR Format

Are the operational scenarios acceptable?

Is the design correct? Will the transformations specified produce

the correct output from the input?

Is the design robust? Is user input examined for potential errors

before processing continues?

Have all design guidelines and standards been followed? How

well have data usage and access been localized? Has coupling

between units" (i.e., interunit dependency) been minimized? Is

each unit internally cohesive (i.e., does it serve a single

purpose)?

Is the design testable?

Is the build schedule structured to provide early testing of end-

to-end system capabilities? Is the schedule reasonable and

feasible for irnplementing the design?

103

w

Section 6 - Detailed Desi_ln

1.

2.

3.

HARDCOPY MATERIAL FOR THE CDR

Agenda -- outline of review material

Introduction -- background of the project, purpose of the system, and an agenda
outlining review materials to be presented

Design overview -- major design changes since PDR (with justifications)
a. Design diagrams, showing products generated, interconnections among subsystems,

external interfaces
b. Mapping of external interfaces to ICDs and ICD status

4, Result= of prototyping efforts

5. Changes to system operation since PDR
a. Updated operations scenarios/scripts
b. System performance considerations

6, Changes to major software components since PDR (with justifications)

7. Requirements traceability matrix mapping requirements to major components

6, Software reuse strategy
a. Changes to the reuse proposal since PDR
b. New/revised reuse tradeoff analyses

c. Key points of the detailed reuse strategy, including software components to be reused
in future projects

d. Summary of RSL contributions -- what is used, what is not, reasons, statistics

9. Changes to testing strategy
a. How test data are to be obtained
b. Drivers/simulators to be built

c. Special considerations for Ada testing

10. Required resources -- hardware required, internal storage requirements, disk space,
impact on current computer usage, impacts of compiler

11. Changes to the SDMP since PDR

12. Implementation dependencies (Aria projects) -- the order in which components
should be implemented to optimize unit/package testing

13. Updated software size estimates

14. Milestones and schedules including a well-thought-out build plan

15. Issue_ risks, problems, TBD items
a. Review of TBDs from PDR
b. Dates by which TBDs and other issues must be resolved

i_

|

L_=

=_

+

.%

--r

Figure 6-7. CDR Hardcopy Material

I T

104

Section 6 - Detailed Desi_ln,

EXIT CRITERIA

To determine whether the development team is ready to proceed with

implementation, the management team should consider the following
questions:

• Are all design diagrams complete to the unit level? Have all
interfaces -- external and internal -- been completely specified?

• Do PDL and prologs exist for all units? Have all unit designs

been inspected and certified?

Have all TBD requirements been resolved? If not, how will the

remaining TBDs impact the cm'rent system design? Are there

critical requirements that must be determined before

implementation can proceed?

Have the key exit criteria for the phase been met? That is, has

the detailed design document been completed, has the CDR been

successfully concluded, and have responses been provided to all
CDR RIDs?

When all design products have been generated and no critical

requirements remain as TBDs, the implementation phase can begin.

105

Section 6 - Detailed Desi_ln

106

E

iE

w

,, Section 7 - Implementation

LIFE
CYCLE
PHASES OEFINITiQN::: I::MENTS: I NARY 1 OESIG,'_

: !i::iii_iii:i:_:_iiiii!i::IAN_L_'SLS[OES_G,_!
IMPLEMENTATION

SECTION 7

THE IMPLEMENTATION PHASE

w

7

PHASE HIGHLI(

ENTRY CRITERIA
• Detailed design document generated
• CDR completed
• CDR RIDs answered

EXIT CRITERIA

• All system code and supporting data
generated and tested

• 8uild test plans successfully executed
• System test plan completed
• User's guide drafted

PRODUCTS

• System code and supporting data
• Build test plans and results
• System and analytical test plans

MEASURES

• Units coded/code-certified/test-certified
vs units identified

• Requirements Q&As, TBDs, and changes
• Estimates of system size, effort,

schedule, and reuse
• Staff hours
• CPU hours

• SLOC in controlled libraries (cumulative)
• Changes and errors (by category)

METHODS AND TOOLS

• Code reading
• Unit testing
• Module integration testing
• Build testing
• Configuration management
• SENs
• CASE

KEY ACTIVITIES

Requirements Definition Team
• Resolve any remaining requirements issues
• Participate in build design reviews (BDRs)

Development Team

• Code new units and revise existing units
• Read new and revised units
• Test and integrate each unit/module*
• Plan and conduct build tests*
• Prepare the system test plan*
• Draft the user's guide
• Conduct build design reviews

Management Team

• Reassess schedules, staffing, training, and
other resources

• Organize and coordinate subgroups
within the development team

• Control requirements changes
• Ensure quality in processes and products
• Direct build design reviews

• Coordinate the transition to system testing

Acceptance Test Team
• Complete the acceptance test plan draft
• Complete the analytical test plan

107
PRECEDi;,_G P_,SE BLAh_K i'_OT FILMED

Section 7 - Implementation

OVERVIEW

The purpose, of the implemer_tatio_; phase is to build a _,-Jrr,r.,lete,
high-qua]ity software '_}'rstelI3from the "blueprint" provi&:d ,n the
detailed design document. The implementation phase begins after

CDR and proceeds according to the build plan prepared during the
detailed design phase. For each build, individual programmers code
and test the units identified as belonging to the build, integrate the
units into modules, and test module interfaces.

At the same time, the application specialists on the development team

prepare plans designed to test the functional capabilities of the build.
Build regression tests -- a selection of tests already conducted in
previous builds -- are included in each build test plan to ensure that
newly added capabilities have not affected functions implemented

previously. All build test plans are reviewed for correctness and
completeness by the management team.

When all coding, unit testing, and unit integration testing for the

build are complete, selected members of the development team build
the system from the source code and execute the tests specified in

the build test plan. Both the management team and the development
team review the test results to ensure that all discrepancies are
identified and corrected.

As build testing progresses, the development team begins to put

together the user's guide and the system description documents. A
draft of the user's guide must be completed by the end of the

implementation phase so that it can be evaluated during system
testing. Material from the detailed design document is updated for

inclusion in the system description document, which is completed at
the end of the system test phase.

Before beginning the next build, the development team c_nducts a
build design review (BDR). The formality of the BDR depends on

the size of the system. Its purpose is to ensure that developers,
managers, and customer representatives are aware of any

specification modifications and design changes that may have been
made since the previous review (CDR or BDR). Current plans for

the remaining builds are presented, and any risks associated with
these builds are discussed.

build

review

The plans for testing the completed system (or release) are also

generated during the implementation phase. Application specialists
from the development team prepare the _ystem test plan, which is
the basis for end-m-end testing during the next life cycle phase. At

the same time, members of the independent acceptance test team

design

i
J

i

iI

q

|
11

=

=

=

Z

s

108 '=

Section 7 - Implementation

prepare the test plan that they will use during the acceptance test
phase.

The implementation process for a single build is shown in

Figure 7-1. Figure 7-2 shows that these implementation processes

are repeated for each build and that a larger segment of the life cycle
m extending from the detailed design phase through acceptance
testing m is repeated for each release.

*NOTE: Verification usually consists of code reading and unit testing. After the programmer
compiles s unit successfully, it ij read by at least two other members of the development team.
When the readers pass and certify the unit. the programmer conducts the unit teats. In the

Cleanroom methodology, however, coded units are read. then submitted to an independent test
team for compilation, integration, and testing.

See KEY ACTIVITIES for descriptions of the processes in this diagram, The contents of build test

plane are covered under PRODUCTS BUILD REVIEWS are the topic of a separate subsection

Figure 7-1. Implementing a Software Build

: 109

Section 7 - Implementation

SRR ._SR POR COR A]_R

I MENT$ I NARV / r_E,._GN I TESTING I OpE_:/j_
I OERNrrlON _MPt.E MENTA'I1ON _I_sr_G

\
oD, "" "I

BUtLD TE

BUILD M IBUILDI
i UNIT CODE. 'r_ST, AND

INTEGRATION --

BUILD M

"NOTE: SeeBuilds and Releases in Section 2 for guidance on the r,umb_r ,')f

build.re|easel appropriate to projects of varying size and cornplex_¢y

"NOTE: A build design review (BDR) _s hetd for avery buitd excep! tP,e brat.

Figure 7-2. Phases of the Life Cycle Are Repeated for Multiple Builds and Releases

ACrM ES

Although the activities of coding, code reading, unit testing, and

integrating a single module are conducted sequentially, the
development team implements each module in parallel with others.
Unless the project is very small, the developmem team is partitioned

into multiple groups during the implementation phase. Each group

is assigned to develop one or more subsystems, and group members
are each assigned one or more modules. During a given build, the
group will code, read, and tesl the modules of its _ub,;ystem that are
scheduled for the build. Therefore, coding, code reading, unit

testing, and module testing activities may be conducted

simultaneously at any given time.

During the implementation phase, the application specialists in the

development team do not code and test units. Instead, they apply

their expertise by reading the code of selected units (such as those
with complex, application-specific algorithms) and inspecting unit
and module test results. They also prepare the system test plan.

The key technical and managerial activities of the implementation
phase are summarized below and shown on a timeline in Figure 7-3.

110

i1

qt

'1

,iq

Section 7 - Implementation

Activities of the Development Team:

Code new units from the detailed design specifications and

revise existing units that require modification. Code units so

that each PDL statement can be easily matched with a set of

coding statements. Use structured coding principles and local

coding conventions (References 22 and 23). Prepare the

command language (e.g., JCL or DCL) procedures needed to
execute the units.

DEFINITION

fC.ode reading is a systematic procedure
for inspecting and understanding source
cede in order to detect errors or
recommend improvements. It is
described in detail in this section under
METHODS AND TOOLS. Certification is

s part of the quality assurance process

wherein an individual signs a checklist

or form as an independent verification
that an activity has been succesdully

_ completed.

See METHODS AND TOOLS

in this section for more

detailed information oncoding standards and unit

testing. Test plans

analytic test plans, build test

plans, and the system test

plan -- are described under
PRODUCTS.

Read new and revised units. Ensure that

each unit is read by a minimum of two

members of the development team who are

not the unit's authors. Correct any errors that

are found, reinspecting the unit as necessary.

Certify all unit code.

Test each unit and module. Prepare unit test

procedures and data, and conduct unit tests. If

the acceptance test team has provided an

analytical test plan for the unit, complete the

test cases specified in the plan and verify that

the computational results are as expected.

Have an experienced member of the

development team review and certify all unit

test procedures and results.

Integrate logically related units into modules

and integrate the modules into the growing

build. Define and run enough tests to verify

the I/O generated by the module and the

interfaces among units within the module.

Ensure that the results of module testing are
reviewed and certified.

¢,,.(NOTE _)

On most projects, unit and module tests

need not be performed separately. As

more units for a particular module are
developed, they are unit tested in the

context of the units previously developed
within the module.

Units may be either executable or data.

On Ads projects, the module takes the

form of a package.

Plan and conduct build tests. Prepare the test

plan for the build, and complete the

preparation of command procedures and data

needed for build testing.

111

Section 7 - Implementation

REQUIREMENTS
DEFINITION
TEAM

SOFTWARE
DEVELOPMENT
TEAM

ACCEPTANCE
TEST TEAM

MANAGEMENT
TEAM

V

(:DR¸

Resolve any remaining requirements issues and TBDs

Participate in BDRs

Code new units and revise reused units ,_r

Read and certify new and revised units _,

Test and integrate each unit and module

Plan and conduct build tests

n

Conduct BDRs

Prepare the system test plan

Draft the user's guide

V

Prepare the analytical test plan

Refine the acceptance test plan

r

Record project history data; reassess schedules, staffing, resources

Organize and coordinate implementation groups

Control requirements changes: ensure quality

Direct BDRs

"f7

,i¢_,

,q •

Update SDMP estimates

Coordinate the transition to system testing

STRR

TIME ,v

Figure 7-3. 77meline of Key Activities in the Implementation Phase

!

=__

u

,it

==

112

Section 7 - Implementation

The load module (or executable image) for the build is created by

the project librarian. When the load module is prepared, execute
the tests specified by the test plan for the build. Ensure that all

output needed for test evaluation is generated. Record any

discrepancies between the results specified in the plan and actual
results.

Correct all discrepancies that are found. When the affected units

are repaired and tested, file a report of the changes with the

project librarian. The librarian ensures that the configured
libraries and test executables are updated with the revised units.

Rerun any tests that failed, and verify that all errors have been

corrected. When all build tests have been successfully
completed, prepare a written report of the test results.

Prepare the system test plan for use during the system testing

phase. Begin to develop the plan immediately after CDR, so that

it will be ready by the end of the phase. Prepare the command
procedures and input data needed for system testing.

Prepare a draft of the user's
guide, using sections of the

detailed design document (the

operations overview and design
description) as a foundation.

(- NOTE

The format end contents of the
user's guide and system
description documents are
itemized under PRODUCTS in
Section 8.

See BUILD
DESIGN REVIEWS
in this section for
guidelines
covering the
review format and
content of BDRs.

J

Begin work on the system

description document by updating

data flow/object diagrams and
structure charts from the detailed

design document.

Conduct a BDR before every

build except the first (changes to
the design and/or build plan that
apply to the first build are covered

during the CDR). Ensure that all

design changes are communicated

to development team members,

users, and other participants.

Present the key points of the build
plan, making certain that all

participants understand their roles
in the build, the schedule, and the

interfaces with other groups or
activities.

113

Section 7 - Implementation

Activities of the Management Team

Reassess schedules, staffing, training,
and other resources. At the beginning of

the phase, record measures and lessons _EUSE
learned from the detailed design phase and

add this information to the draft of the [..i,lt_

software development history. As

implementation progresses, use the size of /
completed units to refine estimates of total [

system size. Use measures of actual Lresources expended and progress during

the implementation phase to update cost
and resource estimates. (See Measures
subsection and Reference 12.)

NOTE "_

Managers should make

frequent checks throughout the

design and implementation

phases to ensure that reuse is

not being compromised for
short-term gains in schedule or

budget. Managers must
actively promote the reuse of

existing software and stress

the importance of developing
software that is reusable in the

future.

Reestimate system size, effort required to complete, schedules,

and staffing each time a build is completed. Toward the end of

the implementation phase, update the SDMP with effort,
schedule, and size estimates for the remaining phases.

Organize and coordinate subgroups within the development
team. At the beginning of the phase, organize the development
team into small, three- to five-person groups. Assign each

group a cohesive set of modules to implement. Regardless of
the size of a module set, the same group should code and test the

units and the integrated modules. As much as possible, ensure
that the designer of a unit is also responsible for its coding and

verification.

Ensure that any new personnel joining the project during this

phase are adequately trained in the standards and procedures

being followed (including data collection procedures) and in the
development language and toolsec Make experienced personnel
available to direct new and/or junior personnel and to provide

on-the-job training.

Control requirements changes. Thoroughly evaluate the

impacts of any specification modifications received during this

phase. Report the results of this analysis to the requirements
definition team and the customer.

Ensure that customers and users of the system agree on the

implementation schedule for any specification modifications that

are approved. To minimize their impact on the build in

progress, schedule the implementation of new features for later
builds.

114

=

it

It

|
q.

J

i

n

11

|

Section 7 - Implementation

I1"

4"

Ensure quality in processes and products. Make spot checks
throughout the phase to ensure adherence to configuration

management procedures, quality assurance procedures, coding

standards, data collection procedures, and reporting practices.

Configuration management procedures -- especially change
control on the project's permanent source code libraries -- are
critical during the implementation phase when the staff is at its

peak size and a large amount of code is being produced.

Monitor adherence to the build plan. Know at all times the

status of development activities and the detailed plans for
development completion.

Review the draft user's guide and system test plans. Participate
in the inspection of test results for each build and assist the

development team in resolving any discrepancies that were
identified.

• Direct all BDRs, and ensure that any issues raised during the
reviews are resolved.

Coordinate the transition to the system testing phase. Staff

the system test team with application specialists, and include one

or two analysts to take responsibility for ensuring the
mathematical and physical validity of the test results. (This will

also guarantee that some analysts are trained to operate the

software before acceptance testing.) Assign a lead tester to

direct the system testing effort and to act as a final authority in
determining the success or failure of tests.

Ensure that the data and computer resources are available to

perform the steps specified in the system test plan. Inform

personnel of the configuration management and testing
procedures to be followed and provide them with the necessary
training.

At the conclusion of the phase, hold an informal system test

readiness review (STRR). Use this meeting to assess whether
the software, the s),siem test team, and the test environment are

ready to begin testing. Assign action items to resolve any

outstanding problems and revise schedules accordingly.

Activities of the Requirements Definition Team

• Resolve any remaining requirements issues. If implemen-
tation is to proceed on schedule, all TBD requirements must be

115

Section 7 - Implementation

resolved early in the phase. If any requirements cannot be
defined because external, project-level information (e.g.,

spacecraft hardware specifications) is incomplete, notify upper
management of the risks and the potential impact to development
schedules. Obtain deadlines by which the missing information

will be supplied, and work with the development team to adjust
schedules accordingly. Prepare a plan to mitigate these risks and

reduce the possible schedule delays and cost overruns.

Ensure that changes to requirements that are of external origin

(e.g., changes to spacecraft hardware) are incorporated into
specification modifications without delay. Submit all

specification modifications to the management team for technical
evaluation and costing.

Participate in all BDRs. Warn the development team of

potential changes to requirements that could impact the design or
otherwise affect current or remaining builds.

Activities of the Acceptance Test Team

Complete the draft of the acceptance test
plan that was begun during the detailed

design phase. The draft should be

provided to the development team before
the start of system testing.

Prepare the analytical test plan. At the

beginning of a build, supply the

development team with the parts of the
analytical test plan that they will need

during the build to verify the results of

complex mathematical or astronomical

computations.

A recommended outline of

the acceptance test plan is

provided under PRODUCTS
in Section 8.

METHODS AND TOOLS

The key methods and tools of the implementation phase are

• Code reading

• Unit testing
• Module integration testing

• Build testing

• Configuration management
• SENs
• CASE

116

7-
i

'It

i

II

4

|

I

m

=

4

w

i

=._

Ii

I

Section 7 - Implementation

w

#

The SEL requires the use of

structured coding principles

and language-dependent
coding standards. SEL

coding standards are
documented in References

22 (Ada) and 23 (FORTRAN).

Reference 24 is one of the

many sources of information

on structured programming.

__ The SEL s recommendation that TM

at least two code readers

|, 1 |',.L_II_ examine each unit stems from a
Cleanroom experiment

IRaference 3). This project

discovered that an average of
only 1/4 of the errors in a unit

were found by both readers.
That is, 7_% of the total errors

found during code reading were

found by only one of the readers, j
%

Some compilers allow the user to TM

generate a cross-reference listing
showing which variables are used

in the unit end their locations.
Code readers should use such

listings, if available, to verify that
each variable is initialized before

first use and that each is

referenced the expected number
of times. Unreferenced variables

may be typos. ._

Each is discussed below.

Code Reading

The first step in the unit verification process is
code reading, a systematic procedure for

examining and understanding the operation of a

program. The SEL has found code reading to
be more cost effective in uncovering defects in
software than either functional or structural

testing and has formalized the code reading

process as a key implementation technique
(References 25 and 26).

Code reading is designed to verify the logic of
the unit, the flow of control within the unit, and

boundary conditions. It is performed before

unit testing, not afterwards or concurrently.
Only code that has compiled cleanly should be

presented for code reading.

Every new or modified unit is read by two or

more team members. Each reader individually
examines and annotates the code, reading it line
by line to uncover faults in the unit's interfaces,

control flow, logic, conformance to PDL, and

adherence to coding standards. A checklist that

is used by code readers on SEL-monitored

projects is shown in Figure 7-4; its use fosters

consistency in code reading by ensuring that
the reader has a list of typical errors to look for

and specific points to verify.

The readers and the unit's developer then meet

as a team to review the results of the reading
and to identify problems that must be resolved.

They also inspect the test plan for the unit. If

errors have been discovered in the unit, the

reader who is leading the meeting (the

moderator) returns the unit to the implementor
for correction. The unit is then reexamined.

When all errors have been resolved, the

moderator certifies that the code is satisfactory
and signs the checklist. The implementor files
the certified checklist in the SEN for the unit.

117

Section 7 - Implementation

UNIT CODE INSPECTION CHECKLIST

Unit Name
Task Number.

Inspection Moderator

System Build/Release
Initial Inspection Date

KEY INSPECTION QUESTIONS Yes No Corrected

1. Is any input argument unused? Is any output argument
not produced? [] [] []

2. Is any data type incorrect or inconsistent? [] [] []

3. Is any coded algorithm inconsistent with an algorithm
explicitly stipulated in PDL or in requirements/specifications? [] [] []

4. Is any local variable used before it is initialized? [] [] []

5. Is any external interface incorrectly coded? That is,

is any call statement or file/database access
incorrectly coded? Also, for an Ada unit, is any external
interface not explicitly referenced/with'd-in? [] [] []

6. Is any logic path incorrect7 [] [] []

7. Does the unit have multiple entry points or multiple, normal
(non-error) exits? [] [] []

ADDITIONAL INSPECTION QUESTIONS
8. Is any part of the code inconsistent with the unit design

specified in the prolog and PDL? [] [] []

9. Does the code or test plan contain any unauthorized
deviations from project standards? [] [] []

10. Does the code contain any error messages that might be
unclear to the user? [] [] []

11. If the unit was designed to be reusable, has any hindrance to
reuse been introduced in the code? [] [] []

ACTION ITEMS AND COMMENTS
(List on a separate sheet. Refer to questions above by number.)

INSPECTION RESULTS
1. If all answers to 1-11 were "No, " the unit's code passes. Check

here and sign below. []

2. If there are serious deficiencies in the code (e.g., if more than one

key question was answered "Yes') the author must correct the unit
design and the moderator must schedule a reinspection.
Scheduled date for reinspection:

3. If there are minor deficiencies in the code, the author must correct
the unit design and hold a followup meeting with the moderator.
Scheduled date for followup meeting:

Moderator's signature certifies that this unit meets all applicable standards and satisfies
its requirements, and that any identified deficiencies have been resolved (applicable at
initial inspection, followup meeting, or reinspection).

Moderator Signature: Date:

"l

l

1

118

Figure 7.4. Sample Checklist for Code Inspection

Section 7 - Implementation

Each member of the development team should be assigned units to
read. If only one or two developers are appointed to read all the

units, the other team members will lose an opportunity to gain

expertise and increase their understanding of the system.

The code reader for a particular unit should not be selected by the

unit's developer, but by the task leader. The choice of code reader

should be appropriate to the character, complexity, and criticality of
the unit. For example, units that contain physical or astronomical

calculations should be read by application specialists who are

familiar with the requirements and able to uncover analytical errors.
Likewise, control units that use operating system services should be

read by an operating system expert, and those that interface with a

DBMS should be examined by a database specialist.

Unit Testing

Unit testing is the second step in verifying the logic, functionality,

computations, and error handling of a unit. The intent of unit testing

is to confirm that the unit provides the capability assigned to it,
correctly interfaces with other units and data, and is a faithful

implementation of the unit design.

In general, the developer who coded the unit executes the tests

identified in the unit test plan; independent testers are not required

unless the unit must comply with stringent safety or security
requirements.

On projects employing the

Cleanroom methodology, no
testing is conducted at the unit

level. When a unit has been read

and certified, it is submitted to an

independent test team for

compilation, integration, and

functional testing. The tests that
are conducted are a statistically

selected subset of system tests.

The test plan should be tailored for the type of

unit being tested. Structural (path) testing is
critical for units that affect the flow of control

through the system. The test plan for such a

unit is generated by the developer from the
unit's design and should include a sufficient

number of test cases so that each logic path in
the PDL is executed at least once. For units

whose function is primarily computational, the

developer may execute an analytical test plan.
Analytical test plans are prepared by the

acceptance test team to assist developers in
verifying the results of complex mathematical,

physical, and astronomical calculations (see

Products). Units that are part of the user

interface are tested using yet another approach
-- one that ensures that each of the user

options on the screen is thoroughly exercised.

119

Section 7 - Implementation

When unit testing is complete, the test results

are reviewed by the developer's team leader or

application specialist. The reviewer certifies
the completeness and correctness of the test.
That is, he or she checks the results against the

test plan to ensure that all logic paths have been
tested and verifies that the test results are

accurate. As with code reading, use of a
checklist is recommended to assist reviewers

and maintain consistency.

f(NOTE

The use of a symbolic

debugger can greatly

improve the efficiency of
unit testing. The output

generated by the symbolic

debugger is filed in the SEN
for the unit.

The unit test plan and test results are maintained in the SEN for the
unit. If extensive changes are made to the unit at a later time, the
unit code must be reread, and the unit must be retested and certified.

The management team determines the level of rigor in unit testing
that is most cost effective for the project. For example, in some

projects it may be more efficient to conduct testing at the module
level than to test individual units. Indeed, for Ada projects, unit

testing should generally be conducted within the context of the
module (i.e., Ada package).

Module Integration Testing
=

Developers integrate individual, tested units into modules, then
integrate these modules into the growing build. The method of

integration testing that is used should be appropriate to the design of

the system. Menu-driven systems, for example, lend themselves to

either top-down or thread testing (Figure 7-5). In contrast, systems
with complex, computational utilities may benefit from a bottom-up

approach. As in unit testing, integration test plans and results are
reviewed and certified by other members of the development team.

In the SEL environment, modules are verified using the existing,

previously tested build as a test bed. Units not yet implemented
exist in the module as stubs; that is, they contain no executable

instructions except to write a message that the unit was entered and
has returned control to the calling unit. This approach tests both the

module's integration into the growing system and the internal code
of the units that it comprises. Test drivers, which must themselves
be coded and tested, are thus eliminated, and higher-level modules

are exercised more frequently.

When a module has been integrated, tested, and certified, the

developer completes a component origination form (COF) for each
of the units in the module. This SEL form has a dual function. The

information provided on the form is stored in the SEL database and

component
origination
form (COl:)

120

i

t

,ii

'K

Section 7 - Implementation
• ==

t

w

TOP-DOWN TESTING

0
0 0

6
$

['_ Previously integrated units

E_ Units integrated this iteration

0 SofWvare =tubs

THREAD TESTING

0
6

I

Top-down testing integrates additional modules level by level. Thread testing
builds a single end-to-end path that demonstrates a basic functional capability,
then adds on to that.

u

Figure 7-5. Integration Testing Techniques

used to track system composition, growth, and change throughout

the project's life cycle. The form is also a key configuration
management tool for the project librarian, who uses the source file

information on the form to enter completed units into the project's
controlled software library.

Build Testing

After all modules in the build have been coded and tested, the

development team conducts build tests on the software in the

controlled library. The purpose of build testing is to verify that the
software provides the functionality required of the build and is a

correct implementation of the design. Build regression tests are also
conducted to ensure that functions provided by previous builds have

not been adversely affected by the new components.

Build tests are executed by selected members of the development
team following a formal build test plan (as described under Products

in this section). The project librarian builds the executable images of
the software from the tested modules in the configured library. The

testers generally use a test checklist or report form to record the
results of each test case as it is executed.

The results of tests are rigorously evaluated by developers,
application specialists, and the management team. Operational
difficulties, abnormal terminations, and differences between actual

121

Sect:on 7 - Implementation

and expected test results are recorded on special report forms.
These discrepancy reports are used to ensure that each problem that

is observed is resolved.

discrepancy

reports

The development team locates the cause of each discrepancy and

corrects the appropriate units. For each logical change that is made
to controlled software, developers submit a change report form

(CRF). This SEL form is used to gather information about the
character of the changes made, their source, the effort required, and

the number of changes due to errors.

change report

form (CRF)

Configuration Management and SENs

During the implementation phase, adherence to
configuration management procedures
becomes critical. Source code is generally

placed under configuration control one module
at a time. When the units in the module have

been coded, tested, and certified, the developer
submits COFs for the units to the project

librarian. The librarian moves the units into

the project's configured source code libraries
and files the units' SENs. Any further

changes to these units must be approved by the
development team leader or designated

application specialist. The developer must
check out the appropriate SENs, update the
unit(s), fill out one or more CRFs, and update
and return the SENs to the project library.

Changes to configui'ed libraries are made
solely by the project librarian, who replaces

configured units with the updated versions.

f"
_ FmmPlarge •ystelT.l, the number _

of discrepancies that must be
I _i1_1 rectified can be substantial.
I _ Managers must track theme
I" discrepancies, assign personnel
/ to resolve them, set dates for
J resolution, and verify that all
| discrepancies have been
/ corrected. U_ of a tracking
| tool, such s= CAT (Reference
/ 27) or a PC-based DBMS, makes
_, this task easier, j

The project librarian maintains the central project library, adding to it
all documentation produced during the implementation phase: SENs

for completed units/modules, test plans and results for each build,
drafts of the user's guide and system test plan, and System

description information. The librarian also catalogs and stores
CRFs for any changes made to software under configuration

management, and files specification modifications and updates to

design documents.

The management of a project's con_olled source code libraries can

be greatly facilitated by the use of an online configuration

management tool. In the flight dynamics environment, DEC's Code

Management System (CMS) is used to manage software developed

122

I

vt

!

,it

t

"!

t

Section 7 - Implementation

language-
sensitive
editors

static code

analyzers

performance
analyzers

in the STL's VAX environment. PANVALET and CAT are used

for systems developed, operated, and maintained in the IBM
environment of the FDF (Reference 27).

Configuration management tools can be used to store all code, test

drivers, data, and executable images; to track changes from one
version to the next; and, most importantly, to provide access

control. CMS, for example, allows the developer or librarian to

reconstruct any previous version of a library element, tracks who is

currently working on the element, and maintains a record of library
access. With a configuration management tool, the project librarian

can readily maintain multiple versions of the system, called

baselines, each of which represents a major stage in system
development. Baselines are generally established for each build, for

system testing, for acceptance testing, and for operational use.

CASE

Use of CASE tools can yield significant benefits during the
implementation phase. The following tools are those that have been

found to be most beneficial in the SEL's development environment.

Language-sensitive editors, such as VAX LSE, provide language-

specific templates that help the programmer to enter and compile
code efficiently, to review resultant diagnostic messages, and to

correct errors -- all within a single editing session. Debuggers

allow the developer to suspend execution of a program, locate and
correct execution errors, and return to program execution
interactively.

Static code analyzers, such as the VAX Source Code Analyzer
(SCA), the RXVPS0 static analyzer, and the Static FORTRAN

Source Code Analyzer Program (SAP), provide cross-referencing

capabilities among source files. They allow the developer to locate
subprograms, variables, and data references and to answer

questions such as "in which units is variable X used?". Additional

functions provided by some analyzers include the display of call-
trees and the extraction of design information.

Performance analyzers (e.g., the VAX Performance and Coverage

Analyzer or Boole & Babbage's TSA/PPE) help the developer
examine the run-time behavior of software to locate inefficiencies

and bottlenecks. They collect data and statistics during the execution

of a program and can generate histograms, tables, and call-trees
from the data. Performance analyzers can also help locate portions

of the software that have not been executed during testing.

123

Section 7 - Implementation

Compilation systems (e.g., Alsys' UNIX Ada

Compilation System or the VAX DEC/Module

Management System) automate and simplify

the process of building complex software
applications. Compilation systems access
source files in the program library and follow

the sequence of dependencies among the files

to automatically build the system from current
versions. This allows a developer or project

librarian to rebuild a system using only

components that were changed since the

previous system build.

compilation
systems

Ada code development and

compilation tools are
described under METHODS

AND TOOLS in Section 6.

Performance analyzers and

static code analyzers are also
discussed in Section 5.

In the FDF, a tailored software development environment called

SDE gives developers access to a variety of tools and utilities. SDE
(Reference 27) integrates editors, compilers, and file allocators

under a single, menu-driven framework. It is a customization of
IBM's Interactive System Productivity Facility (ISPF) that provides
additional tools for the FDF environment. The basic ISPF

capabilities include a screen-oriented editor; utilities for file
allocation, copy, display, and code comparison; and both

foreground and background processing functions. Customization
has added such features as a file translation utility, a system tape

generator, specialized print utilities, and transfer functions for
software moving between the STL and FDF environments. SDE

also provides access to the PAN'VALET text management system, to
the PANEXEC library management system, to Configuration

Analysis Tool (CAT), to the RSL, and to source code analyzers.

software
development
environment

=

i

|

!

MEASURES

Many of the same measures used during detailed design continue to
be collected and analyzed during the implementation phase. In

addition, source code generation and the use of configured libraries

provide the manager with new yardsticks of system growth and

change.

Objective Measures

The following measures are collected during the implementation

phase:

• The number of units coded/read/tested versus the number

identified

• Requirements questions and answers, TBDs, and changes
• Estimates of system size, effort, schedule, and reuse

124

Section 7 - Implementation

• Staff hours

• Total CPU hours used to date

• Source code growth

• Errors and changes by category

Table 7-1 lists each measure, the frequency with which the data are collected and evaluated,
and the sources from which the data are obtained.

Table 7-1.

MEASURE

Staff hours (total and
by activity)

Changes (by category)

Changes (to source
files)

Computer use (CPU
hours and runs)

Errors (by category)

Requirements (changes
and additions to

baseline)

Requirements (TBD
specifications)

Requirements
(questions/answers)

Estimates of total SLOC

(new, modified, and
reused), total units,
total effort, and
schedule

SLOC in controlled

libraries (cumulative)

Status (units identified/
coded/code-certified/

test-certified)

Objective Measures Collected During the Implementation Phase

SOURCE

Developers and
managers
(via PRFs)

Developers (via CRFs)

Automated tool

Automated tool

Developers (via CRFs)

Managers (via DSFs)

Managers (via DSFs)

Managers (via DSFs)

Managers (via PEFs)

Automated tool

Managers (via DSFs)
(The number of
completed units is also
reported by developers
via COFs and by
automated tools)

FREQUENCY
(COLLECT/ANALYZE}

Weekly/monthly

By event/monthly

Weekly/mon thly

Weekly/biweekly

By event/monthly

Biweekly/biweekly

Biweekly/biweekly

Biweekly/biweekly

Monthly/monthly

Weekly/monthly

Weekly/biweekly

DATA COU.ECTION

CONTINUED

(Status data differ from
those collected during
design phases)

BEGUN

125

Section 7 - Implementation

Evaluation Criteria

The number of units coded, code-certified, and unit-test-certified,

versus the total number of units to be implemented, are the measures

of development status collected during the phase. By tracking each
of these measures on a single graph, SEL managers can see whether

all activities are progressing smoothly and in parallel. Sudden
increases or convergences, such as those shown in Figure 7-6,
should raise a red flag. When the development team is under

pressure to meet schedules, code reading and unit testing can
become hurried and superficial. If time is not taken to verify each

unit properly, the effort needed to complete system testing will be
increased substantially.

In the SEL, the growth in the number of units in the project's

configured library is also tracked against the number of COFs. This

helps managers ensure that configuration management procedures

are being followed and that the data needed to track the origin and

types of system components are being collected.

Requirements TBDs and changes continue to be tracked during the

implementation phase. Because designing a system based on best
guesses can lead to extensive rework, a system should not pass

CDR with requirements missing. However, if major changes or
additions to requirements are unavoidable, the design of that portion

of the system should be postponed and presented in a BDR at a later
date. One corrective measure for late specifications is to split the

development effort into two releases, with the late specifications
included in the second release.

development

status

requirements

TBDs and changes

80O

7OO

8OO

5OO

¢n

3OO

2O0

100

0

Target

Unas Cocle<l

Jl,, Units Read

IMPLEMENTATION PHASE

Analysis: For most of the
implementation phase, code reading and
unit testing activities followed unit
coding at a steady rate. However, near
the end of the phase, nearly three times
the normal number of units were
completed in a single week (1). This
"miracle finish" was due to short cuts in
code reading and unit testing that were
taken in an effort to meet schedules.

Result: Project entered the system
testing phase with poor quality
software. To bring the software up to
standard, the system test phase took
100% longer than expected.

Figure 7-6. Development Profile Example

=

_t

126

Section 7 - Implementation

estimates

Section 6 of The Manager's

_ Handbook for SoftwareDevelopment (Reference 12)
contains additional

information on the procedures
for reestimating system size,

cost, and schedule during the

implementation phase.

As implementation progresses, managers
can obtain more accurate estimates of the
total number of units and lines of code in the

system. They can use this data to determine

whether enough effort has been allocated to

complete development.

Managers can compute productivity rates to
further refine project estimates and to

compare the pace of implementation with

that of previous projects. Factors that

should be considered when measuring
productivity include the number of lines of

source code in configured libraries, the
number of units in the libraries, and the

number of completed pages of
documentation per staff hour.

staff hours Staff hours are tracked throughout the phase. If more effort is being

required to complete a build than was planned, it is likely that the
remaining builds (and phases) will require proportionally more

effort as well. After investigating why the deviation has occurred,

the manager can decide whether to increase staffing or schedule and
can replan accordingly.

CPU usage The profile of computer usage on any project is heavily dependent

on both the development process and environment. The manager

must use models of CPU usage from previous, similar projects for

comparison. In the flight dynamics environment, projects that are

developing AGSSs show a steep upward trend in CPU usage early

in the implementation phase. This trend continues during system
testing, but declines in acceptance testing, when testers conduct
extensive off-line analysis of numerical results.

CPU hours that differ substantially from the local model can be

caused by insufficient testing or by requirements changes that
necessitate redesign (Figure 7-7).

source code
growth

The amount of source code in the project's configured library is a

key measure of progress during the implementation phase. As with
CPU usage, the pattern of growth is heavily dependent on the

development process. On projects with multiple builds, periods of

sharp growth in configured SLOC will often be separated by periods
of more moderate growth, when the development team is engaged in

testing the build.

127

Section 7 - Implementation

12_

OEIIGN

10¢¢

600 :_.'._1::

C_ I .;;_:_:".,: :::_::'
,. :_''_::" ::::i:-_:_

0 2O 4O 60

WEEKS FROM SRR

_MPIJEMENTATION I SY$" ITEST

l :...::

I
I I

l I J I,

80

ACC.

TEST

100

Symptom: Computer usage
zero midway through imple-
mentation (1).

Cause: Redesign in response
to excessive requirements

changes instead of imple-
mentation.

Corrective Action: Replan

project based on new scope
of work (2).

Note: The local model is

shown in gray.

t

Figure 7-7. Example of CPU Usage m ERBS AGSS

Managers begin to track change and error data as soon as there are
units in the configured libraries. These data are usually graphed as
the cumulative number of changes or errors per thousand SLOC

over time.

Developers complete a CRF for each logical change made to the
software, recording which units were revised as a result of the

change, the type of change, whether the change was due to error,

and the effort required. This information is compared with change

data generated from the configuration management system (e.g.,
CMS) to ensure that the data are consistently reported.

The rate of software change is a key indicator of project stability.

Comparative models for change rates should be based on historical

data from earlier, similar projects. The SEL model, for example,

reflects a steady, even growth of software changes from the middle

of the implementation phase through the middle of acceptance

testing. Exaggerated flat spots in the graph or sudden jumps in the
change rate should always spur investigation. Excessively high
rates can result from requirements changes, inadequate design

specifications, or insufficient unit testing.

Error rates are generally at their highest level during the

implementation phase. Error rates in the system test phase should

be significantly lower, and should show a further decline during

acceptance testing. The SEL has found that error rates are reduced

by approximately half in each phase after implementation, and that
this decline is independent of the actual values involved. Higher
error rates than expected usually mean that the quality of the
software has suffered from inadequate effort at an earlier stage,

although such rates may also be found when the development

project is exceptionally complex.

change

and error

rates

=

128

g-

Section 7 - Implementation

PRODUCTS

The key products of the implementation phase are

• Systemcode and supporting data
• A set of build test plans and results

• The system test plan

• The analytical test plan

These products are discussed in the paragraphs that follow. In
addition, the development team generates a draft of the user's guide,

while the acceptance test team produces an updated version of the
acceptance test plan. Since both of these documents are finalized

during the next phase, they are described in detail in Section 8.

System Code, Supporting Data, and System Files

By the end of the last build, the project's configured libraries will

contain all the source code for the completed system (or release), the
control and command procedures needed to build and execute the

system, and all supporting data and system files.

Included in the supporting files are all input data sets needed for

testing. Appropriate test data are obtained or generated for each set

of build tests. By the end of the implementation phase, a full suite

of input data sets must be ready for use in system testing. If testing
is to be effective, these test data must be realistic. Test data are

created using a simulator or data generation tool or by manual data

entry. Input data for complex calculations are provided to the

development team with the analytical test plan (see below).

Build Test Plans

Effective testing depends on the timely

availability of appropriate test data.
The software management team must

ensure that the activity of test data

generation is begun well in advance of
testing so that neither schedules nor

testing quality are compromised
because of deficient data.

The use of a formal test plan allows build

testing to proceed in a logically organized

manner and facilitates agreement among
managers and developers as to when the

testing is satisfactorily completed. The

development team prepares the test plan
for the first build before the end of the

detailed design phase. The test plan for

each subsequent build is prepared before
the beginning of implementation for the

build, and highlights of the plan are
presented at the BDR.

129

Section 7 - Implementation

Build test plans follow the general outline shown in Figure 7-8.

Build test plans should always identify a set of build regression tests

m key tests that can be rerun to ensure that capabilities previously

provided remaih intact after corrections have been made or a new
build has been delivered.

System Test Plan

The system test plan is the formal, detailed

specification of the procedures to be followed
while testing the end-to-end functionality of

the completed system. This test plan follows
the same general pattern as the build and

acceptance test plans (Figure 7-8). It is
reviewed by the system test team and the

management team prior to the STRR.

The system test plan must be designed to

verify that the software complies with all
requirements and specifications. It should
concentrate on the user's view of the system

and should probe for any weaknesses that

might not have been uncovered during build

testing.

f(NOTE _ , "_

In the Cleanroom methodology,

tests are statistically selectedfrom a hierarchy of possible

user operations. Build tests ere
scaled-back versions of system tests,

with input restrictions. Because test
cases are based on the expected use of

the system, continuous feedback on the
reliability of the software is obtained

with each build test.

The testing prescribed by the plan should be functional rather than
structural. In functional testing, the system is treated like a black

box. Input is supplied and the output of the system is observed.

The system test plan identifies the functional capabilities specified in

the requirements and specifications and prescribes a set of input
values that exercise those functions. These inputs must include

boundary values and error conditions as well as the main processing

(r NOTE

Testing tools, such as the
DEC/Test Manager, can

help the development team
to create and organize test

descriptions and scripts

efficiently.

stream.

System tests should cover multiple

operational scenarios, not merely the
nominal case (e.g., when the

spacecraft is at a particular attitude
and orbit position). The test plan
must include tests designed to ensure

that interfaces among subsystems are

thoroughly demonstrated, as well as
tests that challenge the robustness of

the system by examining its

performance under load and its

response to user or data errors.

See Section 8 for

more information
on the activites,

methods, tools,

and products of

system testing.

i

130

Section 7 - Implementation

TEST PLAN OUTLINE

The recommended outline for build, system, and acceptance test plans is given below.
Interdependencies among tests should be minimized to allow testing to proceed while failures are
analyzed and corrected.

lg Introduction
a. Brief overview of the system
b, Document purpose and scope

2. Test Procedures

a. Test objectives -- purpose, type, and level of testing
b. Testing guidelines B test activity assignments (i.e., who builds the executables and who

conducts the tests), test procedures, checklists/report forms to be used, and configuration
management procedures

c. Evaluation criteria B guidelines to be used in determining the success or failure of a test
(e.g., completion without system errors, meets performance requirements, and produces
expected results) and the scoring system to be followed

d. Error correction and retesting procedures, including discrepancy report forms to be
completed (see Section 8)

3, Test Summary
a. Environmental prerequisites -- external data sets and computer resources required
b. Table summarizing the system or build tests to be performed
c. Requirements trace _ matrix mapping the requirements and functional specifications to

one or more test items

4. Test Descriptions (Items a to f are repeated for each test)
a. Test name

b. Purpose of the test -- summary of the capabilities to be verified
c. Method _ step-by-step procedures for conducting the test
d. Test input
e. Expected results -- description of the expected outcome
f. Actual results (added during the testing phase) -- description of the observed results

in comparison to the expected results

5. Regression Test Descriptions (Repeat items 4a to 4f for each regression test)

Figure 7-8. Generalized Test Plan Format and Contents

regression

tests

System test plans must specify the results that are expected from

each test. Plans should refer to specific sections of the requirements

and specifications if these documents already contain expected

results. Where possible, each test should be defined to minimize its

dependence on preceding tests, so that the testing process can adapt

to inevitable, unplanned contingencies.

The system test plan must also define the set of regression tests that

will be used to ensure that changes made to software have had no

unintended side effects. The regression test set should be short

enough to be actually used when needed, yet should exercise a

131

Section 7 - Implementation

maximum number of critical functions. As a

rule of thumb, select the key 10 percent of the
total number of tests as the regression test set.

Analytical Test Plan

In the flight dynamics environment, an
additional analytical test plan is generated

during the implementation phase to assist
testers in verifying the results of complex
mathematical and astronomical algorithms.

See METHODS AND TOOLS
in Section 8 for additional

information on regression

testing.

The analytical test plan is produced by
members of the acceptance test team and is

provided to the development team in two

phases. Test procedures for verifying
computations that are performed at the unit
level are delivered before the start of the build

containing the relevant units. The second

portion of the analytical test plan, which
contains tests of end-to-end functionality, is

provided to developers before the start of

system testing and is executed along with the

system test plan.

f(NOTE _

If a complete analytical test plan is
available early in the implementation

phase, the system test plan can be
written to incorporate the analytical tests.

Otherwise, the analytical test plan is

conducted in parallel with the system test

plan. In the latter case, the test team
must work to efficiently coordinate both

sets of tests, minimizing the effort spent

in setup, execution, and analysis.

Analytical test plans are only useful to the development team if input
data and output results are explicitly specified. Ideally, test data sets

containing analytically robust, simulated data should be supplied to
the development team with the plan. The test plan must itemize the

expected, numerical input and output for each test as well as any
intermediate results that are needed to verify the accuracy of

calculations.

_-7.
=
,!

BUILD DESIGN REVIEWS

Reviews are recommended for each build. At BDRs, the

development team and its managers cover important points of
information that need to be transmitted before the next phase of

implementation. Such information includes any changes to the

system design, the contents of the build, and the build schedule.

The focus of a BDR is on status and planning. Strategies for han-

dling TBDs, risk-management plans, and lessons learned from

previous builds should also be covered.

=

|

132

Section 7 - Implementation

BDR FORMAT

Presenters -- software development team

Participants
• Requirements definition team
• Acceptance test team representatives
• Quality assurance representatives
• Customer interfaces

• User representatives
• System capacity/performance analysts

Attendees must be familiar with the project background, requirements,
and design.

Schedule -- before implementation of each build of a system or release,
except the first

Agenda m presentation of changes to the detailed design of the system
and to the build plan, emphasizing lessons learned in previous builds and
risk mitigation strategies

Materials -- distributed a minimum of 3 days before the review.

Figure 7-9. BDR Format

The formality of the review depends on the size and complexity of
the project. Large projects may find that a slide presentation and

hardcopy handouts are necessary. On smaller projects, developers
may simply meet with analysts, customers, and users around a
conference table.

A synopsis of the BDR format is shown in Figure 7-9, and a sug-
gested outline for the contents of BDR materials is provided in
Figure 7-10. If a formal presentation is made, the materials

distributed at the review should be hardcopies of the presentation
viewgraphs or slides.

EXIT CRITERIA

At the end of the final build, the software development manager should
answer the following questions:

Have all components of the system passed each stage of

verification, inspection, and certification? Are all components
organized into configured libraries?

Have all build test plans been completed? Have all critical

discrepancies been resolved successfully?

133

SectJ_.0n 7 - Implementation

• Has the system test plan been completed and reviewed? Are data

files and procedures in place for system testing?

Are documentation products complete? That is, have all SENs

been checked and systematically filed in the project library? Is

the draft of the user's guide ready for evaluation by the system

test team?

When the manager can comfortably answer "yes" to each question,

the implementation phase is complete.

I

1=

2.

MATERIALS FOR THE BDR

Agenda m outline of review material

Design changes since CDR or the previous BDR (with justifications)
a. Revised design diagrams
b. Changes to system operation; updated operations scenarios/scripts, displays, reports,

and screens

3. Build content=
a. Requirements to be met in the build
b. Units and data objects to be included in the build
c. Unresolved problems in earlier builds to be resolved in this build

Testing strategy m sequence of build tests, test data, drivers/simulators, etc.

5. Changes to remaining builds and releases
a. Changes in the distribution of requirements among remaining builds/releases
b. Changes in the distribution of software units and data objects

6. Updated software size estimates

7, Milestones and schedules
a. Schedule for implementing and testing the current build
b. Schedule for the remaining builds/releases

8. Issues, risks, problems, TBD items
a. Review of any remaining TBDs
b. Risks associated with the build

Figure 7-10. BDR Materials

|

134

UFE
CYCLE
PHASES

Section 8 - System Testin_l

t I

SECTION 8

THE SYSTEM TESTING PHASE

PHASE HIGHLI(

ENTRY CRITERIA
• All system code and supporting data

generated and tested
• Build test plans successfully executed
• System test plan completed
• User's guide drafted

Ih..=• EXIT CRITERIA

• System and analytical test plans
successfully executed*

• Acceptance test plan finalized
• User's guide and system description completed
• Configuration audits and ATRR conducted

PRODUCTS

• Tested system code and
supporting files

• System test results
• User's guide
• System description document
• Acceptance test plan

MEASURES

• System tests planned/executed/passed
• Discrepancies reported/resolved
• Staff hours
• CPU hours
• SLOC in controlled libraries (cumulative)
• Changes and errors (by category)
• Requirements Q&As, TBDs, and changes
• Estimates of system size, effort,

schedule, and reuse

METHODS AND TOOLS

System test plan
• Regression testing
• Configuration management
• Configuration audits
• Test tools
• Test logs
• Discrepancy reports
• IV&V

KEY ACTIVITIES

System Test Team
• Prepare for system testing*
• Execute all items in the system and

analytical test plans
• Analyze and report test results
• Control the testing configuration
• Evaluate the user's guide
• Conduct an ATRR

Development Team
• Correct discrepancies found during testing
• Tune system performance
• Complete system documentation
• Identify candidates for the RSL
• Prepare for acceptance testing

Management Team
• Reassess schedules, staffing, and resources
• Ensure the quality and progress of testing
• Control requirements changes
• Conduct configuration audits
• Coordinate the transition to acceptance

testing

Acceptance Test Team
• Finalize the acceptance test plan
• Prepare for acceptance testing

135

Section 8 - System Testin_l

OVERVIEW

The purpose of the system testing phase is to verify the end-to-end functionality of the

system in satisfying all requirements and specifications.

During this phase, the system test team executes the tests specified in the system and

analytical test plans. The results obtained during test execution are documented, and the

development team is notified of any discrepancies. Repairs to software are handled by
members of the development team in accordance with stringent configuration management

procedures. Corrected software is retested by the system test team, and regression tests are
executed to ensure that previously tested functions have not been adversely affected. (See

Figure 8-1.)

oo.=,.0D,,..;,.VI.__--.oL-- ,.,,.,., ..uL,,

| (DRAm { Ex,=cuTeJ_ ",-
| _ _ RE-EXECUTE _ SYSTEM TEST /

! _ _ Te_rcAs_sI-- RESU,TS /
== /

I RESUL_
\ \ g.3 / .I_REPA.DV

..j WORKING SOFTWARE LIBRARIES----U-7-1

'_ CONFIGURED 1.4 P=-'==.._,,__

CORRECTED SOURCE CODE / lipnA'r_

NOTE: See KEY ACTIVITIES for more detailed descriptions of the processes in this diagram.

Figure 8-1. System Testing

=_

,=
I

i

i

w

=_

I

I

136

Section 8 - System Testing

During the system testing phase, the software development team

prepares the documentation for the completed system. The user's
guide is evaluated and an updated version is published by the end of

the phase. The development team also records the final design of
the system in a system description document.

System testing is complete when all tests in both the system test and
analytical test plans have either executed successfully or have been
waived at the authorization of the customer. Near the end of the

phase, the system and its documentation are audited for
completeness. The system is then demonstrated to the acceptance
test team and an acceptance test readiness review (ATRR) is held to
determine whether the system test phase can be concluded and the
acceptance test phase begun.

AffNVnlES

System tests are planned and executed by a subset of the

development team that includes the application specialists. In the
flight dynamics environment, one or more analysts are added to the

system test team to ensure the mathematical and physical validity of

the test results. They also learn to operate the software in
preparation for acceptance testing.

f(" NO'rE "_

When reliability requirements

are particularly stringent,system testing may be

conducted by an independent
test team. See METHODS

AND TOOLS for more

information on independent
verification and validation

(IV&V) procedures.

The senior application specialist is usually

designated as the leader of the system test

team. He or she is responsible for ensuring
that test resources are scheduled and

coordinated, that the appropriate test
environment is established, and that the
other members of the team understand the

test tools and procedures. During testing,
this leader directs the actions of the team,

ensures that the test plan is followed,

responds to unplanned events, and devises
workarounds for failures that threaten the

progress of testing.

The key activities of the system test team,

the development team, the management
team, and the acceptance test team are

summarized in the paragraphs that follow.

A suggested timeline for the performance of
these activities is given in Figure 8-2.

137

Section 8 - System TestJn_l

SYSTEM TEST
TEAM

SOFTWARE
DEVELOPMENT
TEAM

ACCEPTANCE

TEST TEAM

MANAGEMENT
TEAM

V
Prepare for system testing

Execute test cases in the system and analytical test plans

Analyze and report test results

Evaluate the user's guide

Conduct regression tests

Prepare the system description

Isolate and correct software discrepancies _,

Tune system performance

v

Review the acceptance test plan

_' Deliver draft of the acceptance test plan

Finalize the acceptance test plan

Update the user's guide

Record project history data; reassess schedules, staffing, resources

Ensure progress, quality, and completeness of system testing

Update SDMP estimates

V

F

Prepare and conduct the ATRR

V

V

Identify candidates for the RSL

Prepare for acceptance testing

Participate in the ATRR

V

Prepare for acceptance testing
._2"r

Participate in the ATRR

,ty

Coordinate the transition to acceptance tes T
"V

Conduct configuration audits Y

Direct the ATRR

ATRR

TIME 'Y

=

Figure 82. 77meline of Key Activities in the System Testing Phase

138.

Section 8 - System Testin?

Activities of the System Test Team

Prepare for system testing. Establish the system test

environment. System testing generally takes place on the

development computer rather than the eventual operational

computer; however, it may be necessary to rehost the system to

the target computer if there are critical performance
requirements. Ensure that any test tools that will be used are

available and operational.

Ensure that computer resources and operations personnel are

scheduled and available. Resolve resource conflicts early; they

can seriously affect schedules, particularly when real-time
testing is involved.

Effective testing depends on the timely availability of appropriate
test data. Collect and use real data for testing whenever

possible. When real data cannot be obtained, generate and use

simulated data. Before testing is begun, ensure that all test data

and command and parameter files (e.g., JCL and NAMELISTs)

are physically reasonable, reliable, and analytically robust.
Maintain test data and control files under configuration

management.

A developer should not be asked
to system test his or her own code.
Developers on the system test
team should test sections of the
system implemented by members
other than themselves.

Execute all test items in the system and

analytical test plans, running the

regression test set each time a replacement
load module is installed. Follow the

procedures prescribed in the test plan.

Keep printed output for each test execution

and maintain a test log so that events can be

accurately reconstructed during post-test
analysis. Document any discrepancies

between expected and actual test results.

The amount of diagnostic output generated
during testing can either help or hamper

analysis. Tailor diagnostics and debug
output to the test and analysis approach so

that errors can be isolated expeditiously.

Analyze and report test results. Test results must be analyzed

and interpreted to determine if they correspond to those that were

expected. Where possible, use automated tools in the analysis
process. Keep good records of analysis procedures and retain
all relevant materials.

139

Section 8 - System Testing

Determine whether discrepancies are

caused by software or by incorrect

operations. Rerun any tests that failed
because of errors in data, setup, or

procedures as soon as these have been
corrected. When software is implicated,

report the problem using discrepancy

report forms. Discrepancy reports are
reviewed by the management team and

assigned to members of the development
team for correction.

.("/

The results of system testing

are often published in the
same volume as the system

test plan. See PRODUCTS
below and in Section 7 for

guidance in reporting test
results.

When all system tests are complete, compile a final report

documenting the results of testing in both detailed and summary
form. Address any problems encountered and their solutions.

Control the testing configuration. System testing must yield

reproducible results. Moreover, when test results do not match
those that are expected, it must be possible to vary the input

parameters to find those to which the unexpected results are
sensitive. During this process, the exact system configuration

must be kept constant.

To reduce the possibility of configuration errors, only the project

librarian should change configured source libraries and build the

executable image that will be used during system testing.

Evaluate the user's guide. Employ the user's guide during test

preparation and execution. Annotate a copy of the guide, noting
any errors or discrepancies between the information it contains

and actual operational conditions. Suggest ways in which the

clarity and usability of the guide could be improved.

Conduct an ATRR. Meet with management, customers, and

members of the acceptance test and development teams to assess
the results of system testing and the state of preparations for

acceptance testing. Identify and discuss any outstanding
problems that may impose technical limits on the testing or may
affect schedules. The system test and development teams must

be certain that the system is complete and reliable before it is sent

to the acceptance test team.

li

140

Section 8 - Systern.Testin ?

f(mJLE "_

When completing a CRF form, be

sure to correctly note the original
source of an error. Changes to cocle

may be caused by incorrect require-
ment= and specifications or by

design errors. Such changes should
not be labelled as code errors, even

though code was revised,

Activities of the Development Team

Correct discrepancies found during

testing. Assist the test team in isolating
the source of discrepancies between
expected and actual test results. If the

error is in the software design, thoroughly

analyze the ramifications of any design

changes. Update the affected design
diagrams and structure charts before

proceeding with corrections to code.

,.(,,o,,
The contents of the user's

guide, system description,
and acceptance test plan are
discussed under the

PRODUCTS heading in this
section.

Verify all corrections using code reading,

unit testing, and integration testing.
Update the SENs for the revised units and

fill out a CRF describing the
modifications.

Tune the performance of the system.

Analyze the performance of the system,
using tools such as the VAX Performance

and Coverage Analyzer or TSA/PPE (see
Methods and Tools, Section 7). Locate

and CO_XeCtany botdenecks found.

Complete the system documentation. Update the user's
guide, correcting any errors that were found by the system test

team and incorporating the team's recommendations for

improving the document's quality. Ensure that the user's guide

reflects any modifications to software or operational procedures

that are made as a result of system testing. Deliver the updated
version of the guide to the acceptance test team at the ATRR.

Complete the system description. Update the draft begun during

the implementation phase so that the document reflects the final

state of the system. By the end of the system testing phase,
deliver the completed draft to the acceptance test team.

Identify candidates for the RSL. If reuse has been a

determinant in the system design, decide which of the final
software components are sufficiently generalized and robust to

be candidates for the RSL. Also identify any nongeneric

components that could be reused in similar systems. Document
this analysis and forward the candidates for inclusion in the
RSL.

141

Section 8 - System Testin_l

Prepare for acceptance testing. Review the draft of the

acceptance test plan. Ensure that the plan tests only what is in
the requirements and specifications document. Any additional

performance tests or tests that require intermediate results not

specified in the requirements must be negotiated and approved

by the management team.

Work with acceptance testers to obtain the computer resources
needed for acceptance testing and to prepare the necessary input

data sets and command procedures (JCL/DCL). If the system

will be operated in an environment that is different from the

development environment, rehost the system to the target

computer. Demonstrate the system to the acceptance test team
and participate in the ATRR.

Activities of the Management Team

Reassess schedules, staffing, and resources. At the

beginning of system testing, record measures and lessons
learned from the implementation phase and add this information
to the draft of the software development history. Use measures

of effort and schedule expended to date to reestinaate costs and

staffing levels for the remainder of the project.

Ensure the quality and progress of system testing.
Coordinate the activities of the system test and development

teams, and ensure that team members adhere to procedures and

standards. Place special emphasis on enforcing configuration

management procedures; the control of software libraries is

critical during the system and acceptance testingphases.

On a weekly basis, analyze
summaries of testing progress and

examine plots of test discrepancies.
Ensure that the development team
corrects software errors promptly so

that testing does not lose momentum.
Assist developers in resolving

technical problems when necessary.

Ensure that error corrections are

thoroughly tested by the

development team before revised
software is promoted to controlled

libraries for regression testing.
Review all test results and system

documentation.

NOTE

The key to success in system

testing is the system test plan.

A complete and detailed

system test plan results in e
precise understanding of the

functionality that the tester

needs to verify, and provides

an easy tracking mechanism
for monitoring weekly testing

status.

e

=
it

i

|

|

=

I

i!

i

|

142

Section 8 -System Testin_l

Control requirements changes. Although requirements

changes are not frequent this late in the life cycle, when they do

occur, the same formal recording mechanisms (i.e.,
requirements question-and-answer forms and specification

modifications) are used as in preceding life cycle phases.

Challenge any specification modifications that are received after

the beginning of system testing. In general, new specification
modifications that add requirements or enhance the system

should not be accepted unless they are critical for mission

support. Moreover, unless mission-critical changes can be

incorporated with little or no impact to budget and schedule, they

should be scheduled into a later release or implemented during
maintenance and operations.

See METHODS AND TOOLS

for the specific procedures to

be followed in conducting
configuration audits.

Conduct configuration audits. When

system testing is complete, select one or

more quality assurance personnel or

developers to audit the system
configuration. Determine if test records

demonstrate that the system meets all

requirements and functional specifications,
and verify that the system documentation

completely and accurately describes the
actual software in controlled libraries.

Develop action items for the solution of

any problems found.

Coordinate the transition to the acceptance testing phase and
direct the ATRR. Designate the developers and application

specialists who will provide support to the acceptance test team
during the next phase. They will be responsible for setting up

and running tests with members of the acceptance test team
present. Supervise demonstrations of the system for the benefit

of the acceptance test team.

Schedule the ATRR. Ensure that appropriate representatives

attend and that the agenda covers any and all issues that could
affect the success of acceptance testing. Make certain that all

members of both the acceptance test and development teams

understand and approve the procedures that will be followed

during testing. Assign action items resulting from the meeting
and oversee their resolution.

143

Section 8 - System Testin 9

Activities of the Acceptance Test Team

Finalize the acceptance test plan, At the start of the system

test phase, provide the development team with a draft of the
acceptance test plan. Update and complete the plan during the

remainder of the phase.

Prepare for acceptance testing. Prepare all test data, control

language (JCL/DCL), and parameter files needed for testing.
Generate or request any simulated data that will be needed.

Verify test data for completeness and accuracy, and place them

under configuration management.

Schedule the resources needed for testing, including personnel,

terminals, and disk space. Optimize resource usage and avoid
conflicts; careful scheduling is crucial to testing success.

Attend the system demonstrations conducted by the development
team. Practice running the system with developer support.

Participate in the ATRR.

METHODS AND TOOLS

The key methods and tools of the system testing phase are

• The system test plan
• Regression testing

• Configuration management
• Configuration audits
• Test tools

• Test logs

• Discrepancy reports
• IV&V

The system test plan, which is the primary "tool" used during the

phase, is a product of the implementation phase and was discussed
in Section 7. The other methods and tools in this list are elaborated

in the paragraphs that follow.

Regression Testing

Regression testing is the testing that must be performed after

functional improvements or corrections have been made to the

system to confirm that the changes have created no unintended side
effects. Regression testing is an essential element of build and

acceptance testing as well as of system testing. In the

144

Section 8 - System Testin_l

For more information on how to

select a regression test set, see

the description of the system
test plan in Section 7 and the

discussion of the acceptance

test plan under the PRODUCTS

heeding in this section.

implementation phase, build regression tests are
run to ensure that a new build has not impaired

the functioning of previous builds. During

system and acceptance testing, regression tests

are conducted by the test team each time the
load module is replaced. These regression tests

are a selected subset of the full set of system or

acceptance tests, and are specified in the test

plan.

Regression tests also help assure that

configuration management procedures are
followed. If regression tests reveal that an
outdated or untested unit or module was

included in the test configuration, the

management team should immediately

investigate to determine which configuration

management procedures (described below)
were violated.

Configuration Management

During the system test phase, strict adherence to configuration

management procedures is essentiN. Because the software is under

configuration control at this time, any changes to the code in the

permanent source code libraries must be made according to
established procedures and recorded on CRFs. Configuration

management procedures must ensure that the load modules being
tested correspond to the code in the project's libraries.

During system testing, configuration management problems can be

avoided by following certain basic principles:

Limit update access to controlled libraries and restrict rebuilding

of test configurations to a single configuration manager (usually

the project librarian). Whenever possible, use automated tools,
such as CMS control lists, to enforce this restricted access.

Periodically rebuild the test configuration from the controlled
source code, eliminating lower-level working libraries, so that

the system test team can start from an updated, configured

system on each round of testing. If possible, use a two-level

library structure. The top level contains the official system test
executable inaage built t¥om source code in the controlled library;

all system testing is performed from this library. The lower-

level library is used by developers for testing changes when
system tests have failed. When developers' changes are

145

Section 8 - System Tesdncj

promoted into the controlled source code,

the top-level library is rebuilt and the
lower-level library is emptied. Failed tests

are then rerun by the test team from the top
level.

Restrict the frequency with which new
load modules/executable images are
constructed to minimize the amount of

regression testing that must be conducted.
A new load module can be built whenever

a predetermined number of changes to the
controlled source have been made or can

be scheduled on a regular basis, e.g.,

every two weeks.

TAJLORINGNOTE

On Ada projects, management

of a third library, the Ada

compilation library, is critical to

keeping a controlled system
configuration. When updated

source code is promoted to
controlled libraries, the compila-

tion library must be rebuilt
before the new executable

image is constructed.

SENs must also be updated to reflect changes made to source code

during this phase. The developer obtains the SENs from the project
librarian before correcting the software and returns them, along with

the CRF(s), when changes are completed. The project librarian
checks each returned SEN to ensure that the required checklists and

listings have been included.

Configuration Audits

After system testing is complete, configuration audits are performed
to confirm that the system meets all requirements and specifications,

that it is accurately described in the documentation, and that it does

not include any unauthorized changes.

In the functional configuration audit (FCA), selected staff members

spot-check the system test results against the expected results in the

test plan(s) to determine if the tests were performed properly and

completely. They also examine all waivers, verifying that any
uncorrected discrepancies have been reviewed and approved by the

customer.

FCA

When the FCA is complete, the auditors provide a list of the items

they examined and their findings to the management team, along
with their assessment of the readiness of the system for acceptance

testing.

In the physical configuration audit (PCA), auditors compare the
design of the system (as documented in the system description and

SENs) against listings of the software in configured libraries to

verify that these descriptions match the actual, tested system. The
auditors also check the user's guide against the system description to

PCA

146

Section 8 - System Testincj

)
The staff members selected to

conduct the FCA should not have

implemented or tested the
system being audited.

Developers, CLA, or CM personnel
may conduct the PCA.

ensure the two documents are consistent. In a

report to the management team, they summarize
their activities, list the items audited, itemize any
conflicts found, and recommend action items.

Test Tools

Many of the automated tools used to facilitate the
implementation of the system continue to be

employed during the system testing phase.

These tools -- configuration management

systems, symbolic debuggers, static code

analyzers, performance analyzers, compilation
systems, and code-comparison utilities -- are
discussed in Section 7.

The system test plan must

describe the specific

procedures to be followed in

recording and evaluating
system tests and while

correcting test discrepancies.

The contents of the system

test plan are discussed under
PRODUCTS in Section 7.

In addition, test management tools (e.g.,

DEC/Test Manager) can provide an online

mechanism for setting up the test environment,
for testing interactive applications in batch

mode, and for regression testing. Use of such a
tool allows testers to examine test result files

interactively and to generate summary reports of
test runs automatically.

Test Logs

The test log is an ordered collection of the indi-

vidual report forms or checklists that are com-

pleted by testers during actual test execution.

Use of a standard test report form or checklist is essential to the

accurate recording of test results. Each report form should identify
the test, the tester, the load module/executable image being tested,

and the date and time of testing. The form should provide space to
summarize the test case and to record whether the test results

matched those expected. If a discrepancy is found, it is noted on the
form and described in detail in a discrepancy report (see below).

Discrepancy Reports

Testers fill out a discrepancy report form for any errors that they

uncover that could not be immediately traced to an incorrect test

setup or operational mistake. Discrepancy reports are also known as
software problem reports" (SPRs), software trouble reports (STRs),

or softwarefaihtre reports (SFRs). A sample SFR form is shown in

Figure 8-3.

147

Section 8 - System Testin_l ,

w

SOFTWARE FAILURE REPORT

Originator:. Location: Phone:
SFR#: Date: Time:
Test ID: Subsystem:
Load Module:

Source of Failure:
Summary (40 characters):

Failure Level:

Impact, Analysis, and Suggested Resolution:

(SFR Originator -- Do Not Write Below This Line)
.... ========================== ==============

Disposition (Circle One): Accept Reject Date Resolution Is Required:
Assigned to: Date Completed:
Notes:

Figure 8-3. Sample Software Failure Report Form

148

w

Section 8 - System Testing

Discrepancy reports are reviewed by the leader of the system test

team before being passed to the software development team for
correction. The priority given to a discrepancy report depends on

the severity level of the failure. One grading system for failures that
has been used in the flight dynamics environment defines three

levels:

Level i (highest severity): A major error occurred and no
workaround exists. The test cannot be evaluated further.

Abnormal termination of the program, numerical errors, or

requirements that are not implemented are considered level 1

discrepancies.

Level 2: A major error occurred but a software workaround
exists. Abnomml terminations that can be worked around with

different user input, small errors in final results, or minor

failures in implementing requirements are classed as level 2

discrepancies.

Level 3 (lowest severity): A cosmetic error was found. An

incorrect report format or an incorrect description in a display or

message are classified as cosmetic errors, as are deficiencies that
make the software difficult to use but that are not in violation of

the requirements and specifications. If testing schedules are

tight, the correction of cosmetic errors may be waived at the
authorization of the customer.

The status of discrepancy reports must be monitored closely by the

system test and management teams. A discrepancy report is closed
at the authorization of the test team leader when the source code has

been corrected and both the previously-failed test case(s) and the

regression test set have been executed successfully.

IV& V

Independent verification and validation (IV&V) is recommended

whenever high reliability is required in a particular mission-critical

application, such as manned-flight software. In the flight dynamics
environment, IV&V implies that system testing is planned and

conducted by a team of experienced application specialists who are

independent and distinct from the development team. The system
test plan that the team develops must contain additional tests

designed to determine robusmess by stressing the system.

The management team must identify the need for IV&V in the
SDMP. An additional 5 to 15 percent of total project costs should be

budgeted to cover the additional effort required.

149

Secdon 8 - Sy_em Tesdn9

MEASURES

Objective Measures

During the system test phase, managers continue to collect and

analyze the following data:

• Staff hours

• Total CPU hours used to date

• Source code growth
• Errors and changes by category

• Requirements questions and answers, TBDs, and changes

• Estimates of system size, effort, schedule, and reuse

They also begin to monitor measures of testing progress:

• The number of tests executed and the number of tests passed

versus the number of tests planned
• The number of discrepancies reported versus the number of

discrepancies resolved

Table 8-1 lists each of these measures, the frequency with which the

data are collected and analyzed, and the sources from which the data are

obtained. Aspects of the evaluation of these measures that are unique

to the system testing phase are discussed in the paragraphs that follow.

Evaluation Criteria

By tracking the number of system tests executed and passed as a

function of time, the management team gains insight into the

reliability of the software, the progress of testing, staffing

weaknesses, and testing qualityl Figure 8-4 shows a sample system

test status

test profile of a project monitored by the SEL.

The management team also monitors plots of

the number of discrepancies reported during

system testing versfis the number repaired.

If the gap between the number of

discrepancies identified and the number
resolved does not begin to close after the
early rounds of testing, the management team

should investigate. One or more application

specialists may need to be added to the

development team to speed the correction

process.

test

discrepancies

Managers should use a tool to
assist them in tracking the
progress of system testing. The
tool should provide standardized
formats for entering and storing
testing status data, and should
generate plots of discrepancies
found and discrepancies
remaining unresolved, as a
function of time.

150

!
!

=

i

i

!

=

m

Section 8 - System Testincj

Table 8-1. Objective Measures Collected During the System Testing Phase

MEASURE

Staff hours (total and
by activity)

Changes (by category)

Changes (to source
files)

Computer use (CPU
hours and runs)

Errors (by category)

Requirements (changes
and additions to

baseline)

Requirements (TBD
specifications)

Requirements
(questions/answers)

Estimates of total SLOC
(new, modified, and
reused), total units,
total effort, and
schedule

SLOC in controlled

libraries (cumulative)

Status (tests
planned/executed/
passed)

Test discrepancies
reported/resolved

SOURCE

Developers and
managers
(via PRFs)

Developers (via CRFs

i Automated tool

Automated tool

Developers (via CRFs)

Managers (via DSFs)

Managers (via DSFs)

Managers (via DSFs)

Managers (via PEFs)

Automated tool

Managers (via DSFs)

Managers (via DSFs)

FREQUENCY
(COLLECT/ANALYZE}

Weekly/monthly

By event/monthly

Weekly/monthly

Weekly/biweekly

By evenUmonthly

Biweekly/biweekly

Biweekly/biweekly

Biweekly/biweekly

Monthly/monthly

Weekly/monthly

Weekly/biweekly

Weekly/biweekly

DATA COLLECTION

CONTINUED BEGUN

Figure 8-5 shows the SEL model for discrepancy status against which current projects are

compared. The model is generally applicable for any testing phase.

If the number of discrepancies per line of code is exceptionally high in comparison with

previous projects, the software has not been adequately tested in earlier phases. Schedule
and budget allocations should be renegotiated to ensure the quality of the product.

151

Section 8 - System Testin_l

140

120 ,,, Tests planned -- -- ._m, "-

80 Tests executed----Im-_'_

80 //'I/ SymptomTestingstartsoutwe,,then i
/ / levels off, and finally continues at a

40 _#" / lower rate.
_" j Cause: Midway through the phase,

/' f testers found they did not have the input i
I / coefficients needed to test flight

20 /7 software. There was a long delay before --

/J the data became available, and testing
• momentum declined I

0 ! I I I I ! I I I I I I I I I I l I J I t i I I I I I I I I I 1

SYSTEM TEST PHASE

Figure 8-4. EUVEDSIM System Test Profile
i

100%
l" If the project's graph of open discrepancy

| reports is above the curve shown in the __

r" model, the possible causes are __ I

| a)inadequate staffing to J._"" Discrepancies I

I" correct errors J.f'-'_--'- Rxed I
I b) very unreliable software J f I

_" C) ambiguous or volatile J J I

| Discrep_oject's graph of open [
Found

0%

TIME

Start of Testing Phase End of Testing Phase _-

Figure 8-5. eEL Discrepancy Status Model
L_

Error rates should be significantly lower during system testing than

they were during build testing. High error rates during this phase
are an indicator of system unreliability. Abnomlally low error rates

may actually indicate that system testing is inadequate.

error rates

152

Section 8 - System Testin_l

PRODUCTS

The key products of the system testing phase are

• Completed, tested system code and supporting files

• System test results
• The updated user's guide

• The system description

• The acceptance test plan

System Code, Supporting Data, and System Files

By the end of system testing, the project's configured libraries
contain the final load module, the source code for the system

(including changes made to correct discrepancies), the control
procedures needed to build and execute the system, and all

supporting data and con'unand files.

System Test Results

When system testing is complete, test results are published either as

a separate report or in an update of the system test plan. The latter
method lets the reader compare actual with expected results more

easily and eliminates some redundancy in describing test objectives

(see Figure 7-8). The individual report forms or checklists used

during testing to log results are collected in a separate volume.

System test results are reviewed by the test team leader, the

management team, and the CCB; they are also audited as part of the
FCA. Approved test results are controlled using configuration

management procedures.

User's Guide

The user's guide contains the information that will be needed by
those who must set up and operate the system. A recommended

outline for the user's guide is shown in Figure 8-6.

During system testing, the draft of the user's guide that was

produced by the development team during the implementation phase
is evaluated and updated. The system test team uses the guide

during test preparation and execution and provides written
comments back to developers. By the end of system testing, the

development team publishes an updated, corrected version of the
document that reflects the state of the system at the completion of

153

Section 8 - System Testin_l

USER'S GUIDE

The development team begins preparation of the user's guide during the implementation phase.
Items 1 and 2, and portions of item 3, represent updated material from the detailed design
document, although some rewriting is expected to make it more accessible to the user. A draft is
completed by the end of the implementation phase and is evaluated during system testing. At
the beginning of the acceptance test phase, an updated version is supplied to the acceptance test
team for evaluation. Corrections are incorporated, and a final revision is produced at the end of
the phase. The suggested contents are as follows:

Introduction
a. Overview of the system, including purpose and background
b. Document organization
c. Discussion and high-level diagrams of system showing hardware interfaces, external

data interfaces, software architecture, and data flow

2. Operation= overview
a. Operations scenarios/scripts
b. Overview and hierarchy of displays, windows, menus, reports, etc.
c. System performance considerations

3. Description for each subsystem or major functional capability
a. Overall subsystem capability
b. Assumptions about and restrictions to processing in each mode
c. Discussion and high-level diagrams of subsystems, including interfaces, data flow, and

communications for each processing mode
d. High-level description of input and output
e. Detailed description of processing keyed to operator-specified input and actions in terms

of points of control, functions performed, and results obtained (both normal and
abnormal, i.e., error processing and recovery)

f. For interactive subsystems, facsimiles of displays in the order in which they are

generated
g. Facsimiles of hardcopy output in the order in which it is produced, annotated to show

what parameters control it
h. List of numbered messages with explanation of system's and user's actions, annotated to

show the units that issue the message

4. Requirements for execution
a. Resources m discussion, high-level diagrams, and tables for system and subsystems

(1) Hardware

(2) Data definitions, i.e., data groupings and names
(3) Peripheral space considerations m data storage and printout
(4) Memory considerations -- program storage, array storage, and data set buffers
(5) Timing considerations

(a) CPU time in terms of samples and cycles processed
(b) I/O time in terms of data sets used and type of processing
(c) Wall-clock time in terms of samples and cycles processed

b. Run information _ control statements for various processing modes
c. Control parameter information -- by subsystem, detailed description of all control

parameters (e.g., NAMELISTs), including name, data type, length, representation,
function, valid values, default value, units, and relationship to other parameters

ii

Figure 8-6. User's Guide Contents

!

154

w

Section 8 - System Testin_l

("TAILORING NOTE

TAILORING NOTE "_

1 In the system description,

I "1," briefly discuss the
I "IA" errc,r-hendiing philosophy that

I W has been incorporated into the
I" software. For Ade systems, the
| discussion should summarize
| the approach used in raising,
| reporting, and recovering from

exceptions.

Tailor the content of
the user's guide to
highlight the key
information needed
by users. Keep the
writing style
succinct and easily
understandable.

testing. This version is
delivered to the acceptance
test team at the ATRR for use

during the next phase.

System Description

The system description doc-
ument records the final design

of the system. It contains

detailed explanations of the
internal structure of the

software and is addressed to

those who will be responsible

for enhancing or otherwise

modifying the system in the
future. Figure 8-7 gives the

outline for the system

description recommended by
the SEL.

Acceptance Test Plan

test items

The acceptance test plan describes the steps that will be taken during

the acceptance testing phase to demonstrate to the customer that the

system meets its requirements. The plan details the methods and
resources that will be used in testing, and specifies the input data,

procedures, and expected results for each test. In the plan, each test

is mapped to the requirements and specifications to show which
requirements it demonstrates. The requirements verified by a

particular test are called test items.

The acceptance test plan is prepared by members of the acceptance
test team following the generalized test plan outline shown

previously (Figure 7-8). To ensure consistency between the
requirements documents and the acceptance test plan, members of

the requirements definition team join the acceptance test team to

begin working on the plan as soon as the initial requirements and

specifications have been delivered. As TBD requirements are
resolved and as specification modifications are approved, the draft

of the acceptance test plan is updated. At the beginning of system
testing, the completed draft is provided to the development team for
review.

155

SecUon 8 - System Testin_l

SYSTEM DESCRIPTION

During the implementation phase, the development team begins work on the system description by updating
data flow/object diagrams and structure charts from the detailed design. A draft of the document is
completed during the system testing phase and a final version is produced by the end of acceptance testing.
The suggested contents are as follows:

1. Introduction -- purpose and background of the project, overall system concepts, and document
overview

2. System overview
a. Overview of operations scenarios
b. Design drivers (e.g., performance considerations) and their order of importance
c. Reuse strategy
d. Results of prototyping efforts
e. Discussion and high-level diagrams of the selected system design, showing hardware interfaces,

external data interfaces, interconnections among subsystems, and data flow
f. Traceability matrix of major components against requirements and functional specifications
g. Error-handling strategy

3. Description of each subsystem or major functional breakdown
a. Overall subsystem capability
b. Assumptions about and restrictions to processing in each mode
c. Discussion and high-level diagrams of subsystem, including interfaces, data flow, and

communications for each processing mode
d. High-level description of input and output
e. Structure charts or object-oriented diagrams expanded to the subprogram level, showing interfaces,

data flow, interactive control, interactive input and output, and hardcopy output

4. Requirements for creation
a. Resources -- discussion, high-level diagrams, and tables for system and subsystems

(1) Hardware
(2) Support data sets
(3) Peripheral space considerations -- source code storage, scratch space, and printout
(4) Memory considerations -- program generation storage and data set buffers
(5) Timing considerations

(a) CPU time in terms of compile, build, and execute benchmark test
(b) I/O time in terms of the steps to create the system

b. Creation information m control statements for various steps
c. Program structure information -- control statements for overlaying or loading

5. Detailed description of input and output by step -- source code libraries for system and
subsystems, object code libraries, execution code libraries, and support libraries

6. Internal storage requirements -- description of arrays, their size, their data capacity in all
processing modes, and implied limitations of processing

7. Data interfaces for each internal and external interface
a. Description, including name, function, frequency, coordinates, units, computer type, length, and

representation
b. Format -- organization (e.g., indexed), transfer medium (e.g., disk), layout of frames

(samples, records, blocks, and/or transmissions), and storage requirements

8, Description of COMMON blocks, including locations of any hard-coded physical constants

9. Prologs/package specifications and PDL for each unit (separate volume)

10. Alphabetical list of subroutines from support data sets, including a description of each
subroutlne's function and a reference to the support data set from which it comes

Figure 8-7. System Description Contents

l

m
b

I

W.

L

r_

Ir

I¢

156 "I-

J__

Section 8 - System Testing

Acceptance tests must be designed to verify that the system meets
existing, documented requirements. All tests for robustness and

performance must be based on stated requirements. The plan must
explicitly specify the results that are expected from each test and any

debug data or intermediate products that testers will require in order
to evaluate the software.

The basic subset of tests that are to be run during regression testing

are also identified in the test plan. The regression test suite should
include those tests that verify the largest number of critical

requirements in a single run, i.e., those that are the most

comprehensive, yet efficient, tests to execute.

In general, the acceptance test plan should be constructed so that
tests can be conducted independently. Multiple tests may be

performed simultaneously, and testing should be able to continue

after a problem is found. Tests must also be repeatable; if two
different testers execute the same test case, the results should be

consistent.

ACCEPTANCE TEST READINESS REVIEW

When the system is ready to be given to the acceptance test team, a
formal "hand-over" meeting of developers and testers is held. The

purpose of this acceptance test readiness review (ATRR) is to

identify known problems, to establish the ground rules for testing,
and to assist the acceptance test team in setting up the testing

environment.

The formality of the ATRR should

be tailored to the project. On

large projects with many inter-

facing groups, the ATRR should
be held as a formal review with

harclcopy materials and slide/

viewgreph presentations. On

small projects, the ATRR may be
an informal meeting held around

a conference table.

The ATRR is an opportunity to finalize

procedural issues and to reach agreement on
the disposition of any unresolved problems.
To facilitate this, the development team should

conduct demonstrations of the system for the

acceptance test team prior to the meeting. At
the meeting, the discussion should cover the

status of system tests, specification
modifications, system test discrepancies,

waivers, and the results of configuration

audits.

The ATRR format and schedule are shown in

Figure 8-8. An outline of recommended
materials is provided in Figure 8-9.

157

Section 8 - System Testin_l

q;

ATRR FORMAT

Presentsm

• System test team
• Acceptance test team
• Software development team

Other participants
• Quality assurance representatives
• Customer interfaces

• User representatives
• System capacity/performance analysts

Attendees must be familiar with the project background, requirements,
and design.

Schedule _ after completion of system testing and before the beginning
of the acceptance testing phase

Agenda _ establishment of ground rules and procedures for acceptance
testing, identification of known problems, and discussion of the test
environment

Materials -- distributed a minimum of 3 days before the review

Figure 8-8. A TRR Format

ii

E

IE

le

2.

3.

4.

MATERIALS FOR THE ATRR

Introduction -- outline of ATRR materials, purpose of the review, and system overview

System test results
a. Summary of test results
b. Status of discrepancies and waivers
c. Unresolved issues

Acceptance testing overview -- summary of testing approach, including any major
changes to the acceptance test plan
a. Organizational responsibilities during the acceptance testing phase
b. Test configuration and environment, including facilities and computer resources
c. Configuration management procedures
d. Test tools, test data, and drivers/simulators
e. Test reporting, analysis, and discrepancy-handling procedures
f. Test milestones and schedules

Test readiness assessment

a. Results of configuration audits
b. System readiness
c. Staff training and preparedness
d. Status of the acceptance test plan
e. Action items and schedule for their completion

E

W

¢

L

Figure 8-9. A TRR Materials
L__

E
L

=__

158
L

=
L

i
m

w

Section 8 - System Testin_l

#-

EXIT CRITERIA

To determine whether the system and staff are ready to begin the

acceptance testing phase, the management team should ask the

following questions:

• Have the system and analytical test plans been executed

successfully? Have all unresolved discrepancies either been
eliminated as requirements or postponed to a later release in a

formal waiver?

• Have the FCA and PCA been conducted? Have all resulting

action items been completed?

• Are the user's guide and system description accurate, complete,

and clear? Do they reflect the state of the completed system?

• Has the acceptance test plan been finalized?

When the management team can answer "Yes" to each question, the

system testing phase can be concluded.

159

o_
O

¢0
¢

,1_' I'!!II_llf"'' !r' q_r' II i I # i

Section 9 - Acceptance Testin_l

cYCIJE
IINASm=

: :DEF_II_I_TION:::I:MENT_ "1 t_ARY/ _ES]GN :t!_!;!!!!i TES'nNG
:::::::::::::::::::::::::::::: q ' "1 / ::: :::' I ":':: +:':':':';':" :': :':':':':':':':':':':': :': :':':':':': I ": ": "''" ''''" """" I

SECTION 9

THE ACCEPTANCE TESTING PHASE

w P

PHASE HIG

ENTRY CRITERIA _ EXIT CRITERIA

• System and analytical test plans • Acceptance test plan successfully executed
successfully executed • User's guide and system description

• Acceptance test plan finalized finalized
• User's guide and system description completed • System formally accepted and delivered
• Configuration audits and ATRR conducted • Software development history completed

PRODUCTS

• System delivery tape
• Finalized user's guide and

system description
• Acceptance test results
• Software development history

MEASURES

• Staff hours
• CPU hours
• SLOC in controlled libraries (cumulative)
• Changes and errors (by category)
• Requirements Q&As, TBDs, and changes
• Estimates of system size, effort,

schedule, and reuse
• Acceptance test items planned/

executed/passed
• Discrepancies reported/resolved

l • SEL project completion statistics
'-___ METHODS AND TOOLS ii!

• Acceptance test plan
• Regression testing
• Configuration management
• Test evaluation and

error-correction procedures
• Discrepancy reports, test logs, and

test management tools

KEY ACTIVITIES

Acceptance Test Team
• Complete the preparations for acceptance

testing
• Execute the tests items in the acceptance

test plan
• Analyze and report test results
• Evaluate the user's guide
• Formally accept the system

Development Team
• Support the acceptance test team
• Correct discrepancies found during testing
• Train the acceptance test team to operate

the system
• Refine system documentation
• Deliver the completed system

Management Team
• Allocate team responsibilities and finalize

testing procedures
• Ensure the quality and progress of testing
• Ensure cooperation among teams
• Prepare the software development history

PREL;EDI_-3 P.'_GE BLAHF; NOT FILMED

161

Secdon 9 - Acceptance Tesdn_

OVERVIEW

The purpose of the acceptance testing phase is to demonstrate that
the system meets its requirements in the operational environment.

The acceptance testing phase begins after the successful conclusion
of an ATRR. The testing conducted during this phase is performed
under the supervision of an independent acceptance test team (on
behalf of the customer) and follows the procedures specified in the
acceptance test plan. The development team provides training and
test execution and analysis support to the test team. They also
correct any errors uncovered during testing and update the system
documentation to reflect software changes and corrections.

Acceptance testing is complete when each test item specified in the

acceptance test plan has either been successfully completed or has
been waived at the authorization of the customer, and the system has

been formally accepted. The phase is concluded when the system

delivery tape and final system documentation have been delivered to
the customer for operational use.

Figure 9-1 is a flow diagram that shows the process of acceptance
testing.

KEY' AC_NITI_

During this phase, the acceptance test team and the development

team work closely together to set up and execute the tests specified

in the acceptance test plan.

The acceptance test team is composed of the analysts who will use

the system and several members of the team that prepared the

requirements and specifications document. The acceptance test
team supplies test data, executes the tests, evaluates the test results,

and, when acceptance criteria are met, formally accepts the system.

Members of the development team correct any discrepancies arising

from the software and finalize the system documentation. Often, the

development team sets up and executes the first round of acceptance

tests. This provides training for the acceptance test team, which
then assumes responsibility for test execution during the subsequent

rounds of acceptance testing. In any case, one member of the

development team is always present during each testing session to

offer operational and analysis support.

162

w

Lt

2-
L

%

=

i-

Section 9 - Acceptance Testing

,P

r

I _ ,., / _ A,A'YZaOT_ST ._uLTs

\ /
k I "'.'_."" _ CORRECTE0

co_c,aosou.o.coo, f g._;a,__ F"

"__"I_A_ | _u_i__._p_._?..i u_T_
yTi_ CO

NOTE: See KEY ACllV TiES for more deta,led SU_IoI_'_IT;_ON _°
descriptions of the processes in this diagram.

Figure 9-1. Acceptance Testing

Some acceptance testing activities, such as test set up and execution, generation of test data,

and formal discrepancy reporting, can be performed by either the development team or by

the acceptance test team. At the ATRR, the assignment of each of these activities to a

particular team is negotiated by members of the management team. The management team,
which includes managers of both the software development and acceptance test teams,

bases these assignments on the specific needs and drivers of the project.

The key technical and managerial activities of the acceptance test phase are outlined in the

following paragraphs. A recommended timeline for the execution of these activities is

shown in Figure 9-2.

163

,Sectl°n 9 - Acceptance TestJn_l

'!

t

ACCEPTANCE
TESTTEAM

SOFTWARE
DEVELOPMENT
TEAM

MANAGEMENT
TEAM

Complete preparations for acceptance testing

Generate test data

V
Evaluate the user's guide

Execute acceptance tests _,

Evaluate tests _,

Report final test results

Prepare for acceptance testing

Provide acceptance testing support

Correct errors

Deliver new load modules

Update user's guide and system description

Del;ver system
i

J
Finalize testing procedures and assign team duties

V
Record project history data

Ensure progress, quality, and completeness of acceptance testing

"V
Coordrnate testing activities and manage priorities

V
Quality assure final products

Complete software development history

"V'
ATRR

TIME

Figure 9-2. 77meline of Key Activities in the Acceptance Testing Phase

v

BE

=

r
E

ii
=

"eL

%

_..±

"%=

z

=

164

w

Section 9 - Acceptance Testin_

Activities of the Acceptance Test Team

Complete the preparations for acceptance testing. Establish

the acceptance test environment. Acceptance testing, unlike

system testing, always takes place on the computer targeted for

operational use; therefore, it is critically important to schedule

computer resources well in advance.

Finish generating the simulated data to be used in testing and
allocate the necessary data sets. Quality check the simulated data

to ensure that the required test data have been produced. Bear in

mind that generating simulated data requires intensive effort and
that, because of the complexity of flight dynamics test data,
simulated data must often be generated several times before the

desired data set is achieved. Plan ahead for adequate time and

resources.

Refer to the user's guide to determine the parameters needed to

set up the test cases. Work with the development team to set up
the tests accurately and to assure the quality of test preparations.

Check the control-language procedures (JCL/DCL) for executing

tests.

Obtain the expected results from the acceptance test plan and

review them for completeness. Calculate any expected results

that are missing.

Execute the test items in the acceptance test plan. Early in

the phase, attempt to execute all tests in the order given in the

acceptance test plan, executing each item of each test in

sequence. This "shake-down" ensures that any major problems
are found early, when they can be most easily corrected.

If a basic misunderstanding of a requirement is found during
initial test runs, such that further testing would be unproductive,

suspend testing until a new load module can be produced.

Negotiate with the development team to determine a schedule for
the delivery of a corrected load module and the resumption of

testing.

Control the testing configuration. To relate test results to a

particular load module unambiguously, run the entire set of tests
designated for a round of testing on a specific load module

before introducing any corrections. Continue testing until the
number of errors encountered make further testing unproductive.

- 165

SecUon 9 - Acceptance Testin_

Introduce new load modules according to the test configuration
management procedures. When a new, corrected load module is

received, first rerun those tests that previously failed because of

software errors. If those tests succeed, proceed with regression
testing.

Execute the regression tests to demonstrate reproducible results

and ensure that corrections have not affected other parts of the
system. The basic subset of tests to be run during regression

testing, as identified in the acceptance test plan, includes those
that are the most comprehensive yet efficient tests to execute.

The regression test suite may be modified to expedite testing or

to provide different coverage as testers gain more experience
with the system.

During each test session, review test results with the developers
who are supporting the tests to ensure that the test was executed

properly. At the end of the test session, produce a preliminary

report listing the test cases that were executed and recording
these initial observations.

Analyze and report test results. Evaluate test results within

one week of execution. Wherever possible, use automated tools

in the analysis process. Record analysis procedures and keep all
relevant materials. Remember that records and reports must give
complete accounts of the procedures that were followed; if a test

cannot be evaluated, note the fact and report the reasons for it.

Compare test results with expected results and document all

errors and discrepancies found, regardless of how minor they
appear or whether they will be corrected.

Prepare a detailed evaluation report for each test• This report
should include a test checklist and a categorization of the results

for each item of each test. Specific test evaluation procedures,
including a five-level test categorization scheme, are discussed
under Methods and Tools'.

Near the end of the phase, when all acceptance tests have been

completed, prepare a final report documenting the results of
testing. Include the final detailed report on each test, and

provide an overall summary that gives an overview of the testing
process and records how many test items passed during each
round of testing.

F

=

Z-

166

m--

iF

Section 9 - Acceptance Testin_l

r

f

Evaluate the user's guide. During acceptance testing, evaluate

the user's guide for accuracy, clarity, usability, and
completeness. Provide this feedback to the development team so

that they can update the document and issue a finalized version

by the end of acceptance testing.

Formally accept the system, When the system meets all
acceptance criteria, except those waived by the customer,

prepare a formal memorandum declaring the system accepted.

Activities of the Development Team

Support the acceptance test team. Assist the acceptance test
team in setting up and executing tests. At least one developer
should be available during each test session to answer questions,

to provide guidance in executing the system, and to review initial
test results.

NOTE

The degree to which the

development team assists the
acceptance test team in setting up

and executing tests, generating test

data, or preparing discrepancy

reports varies with the project.

Management defines each team's
duties at the start of the phase and

documents them in the acceptance

test procedures.

Work with the acceptance test team to isolate

the sources of discrepancies between

expected and actual test results. Classify
failed test items according to their causes,

showing which items failed because of the

same software discrepancies and which items
could not be evaluated because a preceding

test failed. Help the testers prepare formal

discrepancy reports; typically, because a

single factor may cause more than one
failure, there are fewer discrepancy reports
than failed test items.

f(RULE

No specification modifications

that add requirements or

enhancements can be accepted
during acceptance testing.

Instead, these should be

carefully considered for

implementation during the

maintenance phase.

Correct discrepancies found during
testing. Correct those software errors that

occur because of faults in the design or

code. Errors in the specifications are

corrected as negotiated by the acceptance test

manager, the development manager, and the
customer. Because the requirements and

specifications are under configuration
control, the CCB must also approve any

corrections to specifications. Incorporate
software updates that result from approved
corrections into a future load module.

167

Section 9 - Acceptance Tesdn_l

Use detailed test reports, test output, and the specifications to
isolate the source of each error in the software. If an error is

uncovered in the software design, the effect of the repair on

costs and schedules may be significant. Look for a workaround

and notify management immediately so that the impact and

priority of the error can be determined.

Verify all corrections, using code reading, unit testing, and
integration testing. Update the SENs for the revised units and
fill out a CRF describing each correction. Strictly follow the

same configuration management procedures for revised units as

were used during system testing. To reduce the possibility of

configuration errors, only the project librarian should change
configured source libraries and build the executable image.

Deliveries of new acceptance test load modules should include a
memorandum detailing which discrepancy reports have been

resolved and which are still outstanding.

Train the acceptance test team to
operate the system. Ensure that

members of the acceptance test team
steadily gain expertise in running the

system. Training may be completed at

the beginning of acceptance testing or

spread out over the phase. The schedule
of training depends on when the

acceptance test team is to assume full

responsibility for executing the tests.

f(NoTE

In the flight dynamics environment,

training is limited to executing or

operating the system. The
development team does not train

the operations team on how to use
the system to support the mission.

• Refine system documentation. Finalize '-

the user's guide and the system

description documents to reflect recent
software changes and user comments.

• Deliver the completed system. After the system is accepted,

prepare the final system tape. Verify its correctness by loading it
on the operational computer, building the system from it, and

using the test data on the tape to execute the regression test set

specified in the acceptance test plan.

Activities of the Management Team

Allocate team responsibilities and finalize testing
procedures. Negotiate to determine the appropriate team
structure, division of duties, testing procedures, and

contingency plans for the project.

I

W

m

__-=
i

i

=

z_

,i!

r.

I

qt

168

.=
I

=.

|

w

Section 9 - Acceptance Testing

F

f

Define a realistic testing process that can be used on this project
and adhere to it. Tailor the standard process to address drivers

specific to the project, such as system quality, schedule
constraints, and available resources.

Define the roles and responsibilities of each team clearly.

Specify which teams are to generate simulated data, set up test
cases, execute tests, and prepare formal discrepancy reports.
Where teams share responsibility, clearly define the specific

activities that each is expected to perform.

Stipulate contingency plans. Specify what will happen if a
major error is encountered. Define the conditions that warrant

suspension of testing until a correction is implemented. Define
when and how testing should circumvent a problem.

Ensure the quality and progress of testing. Ensure that team

members adhere to procedures and standards. Analyze

summaries of testing progress and examine plots of test

discrepancies weekly. Use measures of effort and schedule

expended to date to reestimate costs and staffing levels for the

remainder of the project.

Place special emphasis on enforcing configuration management

procedures. The control of software libraries and test
configurations is critical during the acceptance testing phase.

Ensure cooperation among teams. Coordinate the activities of

the acceptance test and the development teams. Ensure that the
acceptance test team evaluates tests quickly and that the

development team corrects software errors promptly so that the

pace of testing does not decline. Assist in resolving technical

problems when necessary.

The contents of the software

development history are
outlined under the PRODUCTS

heading in this section.

Ensure that error corrections are thoroughly

tested by the development team before
revised units are promoted to controlled
libraries and delivered for retesting.

Review all test results and system
documentation.

Prepare the software development
history. At the beginning of acceptance

testing, record measures and lessons
learned from the system testing phase and

169

Section .9 - Acceptance Tesdn_

add this information to the software development history.

Complete the phase-by-phase history at the end of acceptance

testing and prepare the remainder of the report. Summarize the
project as a whole, emphasizing those lessons learned that may

be useful to future projects and process-improvement efforts.

Include summary charts of key project data from the SEL
database.

METHODS AND TOOLS

The key methods and tools of the acceptance testing phase are

• The acceptance test plan

• Regression testing

• Configuration management
• Test evaluation and error-correction procedures

• Discrepancy reports

• Test logs
• Test management tools

The final acceptance test plan, which describes the procedures to be
followed in recording and evaluating acceptance tests and while

correcting test discrepancies, is a product of the system testing phase
and was discussed in Section 8.

Many of the automated tools used in the acceptance testing phase
were introduced to facilitate the implementation of the system.

These tools -- configuration management systems, symbolic

debuggers, static code analyzers, performance analyzers,

compilation systems, and code-comparison utilities- are discussed
in Section 7.

Test logs, discrepancy reports, test management tools, and

regression testing procedures are the same as those used for system

testing; they are discussed in detail in Section 8.

The other methods and tools in this list are elaborated in the

paragraphs that follow.

Configuration Management

During the acceptance test phase, as in the other test phases, strict
adherence to configuration management procedures is essential.
Any changes to the code in the permanent source code libraries must
be made according to established procedures and recorded on CRFs.

170

=

m

_=

=

i

k_
,11

.-_-

=

11:

Jr

Section 9 - Acceptance Testing

Configuration management procedures must ensure that the load
modules being tested correspond to the code in the project's
libraries.

Developers should follow the guidelines given in Section 8 for
managing configured software as they repair discrepancies, test the
corrections, and generate new load modules for acceptance testing.

Acceptance testers must be able to relate test results to particular load
modules clearly. Therefore, the load modules must be under strict
configuration control, and, at this point in the life cycle, the entire
set of tests designated for a round of testing should be run on a
specific load module before any corrections are introduced.
Similarly, changes in the test setup or input data must be formally
documented and controlled, and all tests should be labeled for the
module and environment in which they were run.

Test Evaluation and Error-Correction Procedures

The acceptance test team is responsible for evaluating each
acceptance test and forwarding the results to the development team.

Each test consists of a number of items to be checked. The results

of analyzing each test item are categorized according to the following
five-level evaluation scheme:

Level 1: Item cannot be evaluated or evaluation is incomplete.

This is normally the result of an incorrect test setup or an

unsatisfied dependency. If this category is checked, the reason
should be stated. If the test could not be evaluated because the

test was inadequately specified, the test plan needs to be

corrected.

• Level 2: Item does not pass, and an operational workaroundfor

the problem does not exist.

• Level 3: Item does notpass, but an operational workaroundfor

the problem exists.

• Level 4: Only cosmetic errors were found in evaluating the item.

• Level 5: Noproblems werefi)und.

Typically, items categorized as Level 1 or 2 are considered to be

high priority and should be addressed before items at Levels 3 and
4, which are lower priority. The intention is to document all errors

and discrepancies found, regardless of their severity or whether they

will ultimately be corrected.

171

Section 9 - Acceptance Testin_

Tests and test items are evaluated according to these criteria:

• All runs must execute correctly without encountering abnormal
terminations or any other runtime errors.

• Numerical results must be within acceptable limits of the

expected values.

Tabular output must meet the criteria outlined in the

specifications, with proper numerical units and clear descriptions

of parameters.

The acceptance test team documents test results using two kinds of

report:

Preliminary reports, prepared at the end of each test session,

provide a rapid assessment of how the software is working and

early indications of any major problems with the system. They
are prepared by the acceptance test team on the basis of a "quick-
look" evaluation of the executions.

Detailed reports, prepared within a week of test execution,

describe problems but do not identify their sources in the code.

They are prepared by the acceptance test team by analyzing
results obtained during the test sessions, using hand calculations

and detailed comparisons with the expected results given in the
acceptance test plan.

The testers and developers then work together to identify the

software problems that caused the erroneous test results directly or

indirectly. These software problems are documented and tracked

through formal discrepancy reports, which are then prioritized and
scheduled for correction.

The development team then corrects errors found in the software

subject to the following guidelines:

Software errors that occur because of a violation of the

specifications are corrected, and the corrections are incorporated

into an updated load module for retesting.

Corrections resulting from errors in the specifications or
analytical errors require modifications to the specifications. The

customer and the CCB must approve such modifications before

the necessary software updates are incorporated into an updated
load module.

172

preliminary
test

reports

detailed
test

reports

=_

I

_=

=_

m

w¢

=

q_

IP

Section 9 - Acceptance Testin_l

MEASURES

Objective Measures

During the acceptance testing phase, managers continue to collect

and analyze the following data:

• Staff hours
• Total CPU hours used to date

• Source code growth

• Errors and changes by category
• Requirements questions and answers, TBDs, and changes

• Estimates of system size, effort, schedule, and reuse
• Test items planned, executed, and passed

• Discrepancies reported and resolved

,,.(" NO'm "]

A complete description of the

PCSF end SEF can be foundin Data Collection Procedures

for the SEL Database

(Reference 19}

J

The source of these measures and the frequency

with which the data are collected and analyzed are
shown in Table 9-1.

At the completion of each project, SEL personnel

prepare a project completion statistics form
(PCSF). The management team verifies the data
on the PCSF, and fills out a subjective evaluation

form (SEF). The data thus gathered helps build
an accurate and comprehensive understanding of

the software engineering process. Combined

with the software development history report, the

SEF supplies essential subjective information for

interpreting project data.

test status

Evaluation Criteria

The management team can gauge the reliability of the software and

the progress of testing by plotting the number of acceptance test

items executed and passed in each round of testing as a function of
time. An exceptionally high pass rate may mean that the software is

unusually reliable, but it may also indicate that testing is too

superficial. The management team will need to investigate to
determine which is the case. If the rate of test execution is lower

than expected, additional experienced staff may be needed on the test
team.

173

Section 9 - Acceptance Tesfin_l

Table 9-1. Objective Measures Collected During the AccePtance Testing Phase

MEASURE

Staff hours (total and
by activity)

Changes (by category)

Changes (to source
files)

Computer use (CPU
hours and runs)

Errors (by category)

Requirements (changes
and additions to

baseline)

Requirements (TBD
specifications)

Requirements
(Questions/answers)

Estimates of total SLOC

(new, modified, and
mused), total units,
total effort, and
schedule

SLOC in controlled

libraries (cumulative)

Status (test items
planned/executed/
passed)

Test discrepancies
reported/resolved

SOURCE

i

Developem and
managers
(via PRFs)

Developers (via CRFs)

Automated tool

Automated tool

Developers (via CRFs)

Managers
(via DSFs)

Managers
(via DSFs)

Managers (via DSFs)

Managers
(via PEFs)

Automated tool

Managers (via DSFs)

Managers (via DSFs)

FREQUENCY
(COLLECT/ANALYZE]

Weekly/monthly

By evenVmonthly

Weekly/monthly

Weekly/biweekly

By evenVmonthty

Biweekly/biweekly

Biweekly/biweekly

Biweekly/biweekly

Monthly/monthly

Weekly/monthly

Weekly/biweekly

Weekly/biweekly

DATA COLLECTION

CONTINUED BEGUN

* Note: Test status is
plotted separately for
the system testing and

* the acceptance testing
phases, Test
discre _ancies are also

plotted separately for
. each _hase.

174

!1

q

Section 9 - Acceptance Testin_

test

discrepancies

error rates

The management team also monitors plots of the number of

discrepancies reported versus the number repaired (see Measures in
Section 8). If the gap between the number of discrepancies
identified and the number resolved does not begin to close after the

early rounds of acceptance testing, more staff may be needed on the

development team to speed the correction process.

The trend of the error rates during the acceptance testing phase is

one indication of system quality and the adequacy of testing. Based

on SEL projects from the late 1980s and early 1990s, the SEL

model predicts a cumulative error rate of 4.5 errors per KSLOC by
the end of acceptance testing. Typically, the SEL expects about 2.6

errors per KSLOC in the implementation phase, 1.3 in system

testing, and 0.65 in acceptance testing; i.e., error detection rates

decrease by 50 percent from phase to phase.

An error rate above model bounds often indicates low reliability or

misinterpreted requirements, while lower error rates indicate either

high reliability or inadequate testing. In either case, the management
team must investigate further to understand the situation fully.

Figure 9-3 shows an example of an error-rate profile on a high-

quality project monitored by the SEL.

DESIGN IMPLEMEN- SYSTEM AC(_ PTkNCE

J rAnO" I T_ST l rEST
I .l:+:+_:_::_!::+!!+!iii::ii!!iii!!i

L I .

/ ,mode, +i++++:+......

'rIME

Symptom: Lower error rate
and lower error detection
rate.

Cause: Early indication of
high quality. Smooth pro-
gress observed in uncovering
errors, even between phases
(well-planned testing).

Result: Proved to be one of

the highest-quality systems
produced in this environment.

Figure 9-3. Sample Error-Rate Profile, LIARS AGSS

175

Section 9 - Acceptance Testin_l

PROOUCTS

The key products of the acceptance testing phase are

• System delivery tape
• Finalized user's guide and system description

• Acceptance test results
• Software development history

System Delivery Tape

At the end of acceptance testing, a system delivery tape is produced

that contains the accepted system code and the supporting files from

the project's configured libraries. The system tape holds all of the
information required to build and execute the system, including the

following:

• The final load module

• The source code for the system

• The control procedures needed to build and execute the system

• All supporting data and command files
• Test data for regression tests

Two copies of the system tape are delivered to the customer.

Finalized User's Guide and System Description

The user's guide is updated to clarify any passages that the testers

found confusing and to reflect any changes to the system that were

made during the acceptance testing phase. The system description is
also updated; system changes are incorporated into the document

and any discrepancies found during the configuration audits are
corrected. Final versions of both documents are delivered at the end

of the project.

Acceptance Test Results

When acceptance testing is complete, test results are published either

as a separate report or in an update of the acceptance test plan. (The
latter method allows the reader to easily compare actual with

expected results and eliminates some redundancy in describing test

objectives; see Figure 7-8.) The individual report forms or
checklists used during testing to log results are collected in a

separate volume.

176

=

11

,ll

It

Section 9 - Acceptance Testin_l

Software Development History

During the acceptance testing phase, the management team finalizes
the software development history for the project. This report, which

should be delivered no later than one month after system acceptance,

summarizes the development process and evaluates the technical and

managerial aspects of the project from a software engineering point

of view. The purpose of the report is to help software managers
familiarize themselves with successful and unsuccessful practices

and to give them a basis for improving the development process and

product. The format and contents of the software development

history are shown in Figure 9-4.

EXIT CRITERIA

To determine whether the system is ready for delivery, the

management team should ask the following questions:

• Was acceptance testing successfully completed?

° Is all documentation ready for delivery? Does the user's guide
clearly and completely describe how to execute the software in

its operational environrr_ent?

• Has the acceptance test team, on behalf of the customer,

formally accepted the software?

° Have final project statistics been collected and have subjective

evaluation forms been subrnitted? Is the software development

history complete?

When the management team can answer "Yes" to each question, the

acceptance testing phase is concluded.

177

Section 9 - Acceptance Tesl_ncj

SOFTWARE DEVELOPMENT HISTORY

Material for the development history is collected by the management team throughout the life of
the project. At the end of the requirements analysis phase, project data and early lessons
learned are compiled into an initial draft. The draft is expanded and refined at the end of each
subsequent phase so that, by the end of the project, all relevant material has been collected and
recorded. The final version of the software development history is produced within 1 month of

software acceptance. The suggested contents are as follows:

1. Intreduetion -- purpose of system, customer of system, key requirements, development
machines and language

2. Historical overview by phase w includes products produced, milestones and other key
events, phase duration, important approaches and decisions, staffing information, and
special problems
e. Requirements definition -- if requirements were produced by the software development

team, this section provides an historical overview of the requirements definition phase.
Otherwise, it supplies information about the origin and documentation of the system's
requirements and functional specifications

b. Requirements analysis
c. Preliminary design
d. Detailed design
e. Implementation --coding through integration for each build/release
f. System testing
g. Acceptance testing

3, _i_t aat=
a. Personnel and organizational structure -- list of project participants, their roles, and

organizational affiliation. Includes a description of the duties of each role (e.g., analyst,
developer, section manager) and a staffing profile over the life of the project

b. Schedule _ table of key dates in the development of the project and a chart showing
each estimate (original plus reestimates at each phase end) vs. actual schedule

c. Project characteristics
(1) Standard tables of the following numbers: subsystems; total, new, and reused

units; total, new, adapted and reused (verbatim) SLOC, statements, and
executables; total, managerial, programmer, and support hours; total productivity

(2) Standard graphs or charts of the following numbers: project growth and change
histories; development effort by phase; development effort by activity; CPU usage;
system test profile; error rates; original size estimate plus each reestimate vs. final
system size; original effort estimate plus each reestimate vs. actual effort required

(3) Subjective evaluation data for the project w copy of the SEL subjective evaluation
form (SEF) or report of SEF data from the project data base (see Reference 19)

4. Lemsons learned _ specific lessons and practical, constructive recommendations that
pinpoint the major strengths and weaknesses of the development process and product, with
particular attention to factors such as the following:
a. Planning -- development plan timeliness and usefulness, adherence to development

plan, personnel adequacy (number and quality), etc.
b. Requirements _ completeness and adequacy for design, change history and stability,

and clarity (i.e., were there misinterpretations?), etc.
c. Development -- lessons learned in design, code and unit testing
d. Testing -- lessons learned in system and acceptance testing
e. Product assurance -- adherence to standards and practices; QA and CM lessons learned
f. New technology -- impact of any new technology used by the project on costs,

schedules, quality, etc. as viewed by both developers and managers; recommendations
for future use of the technology

Figure 9-4. Software Development History Contents

178

l

%

=

q

Section 10 - Keys to Success

SECTION 10

KEYS TO SUCCESS

HIGHLIGHTS

KEYS TO SOl- I WARE DEVELOPMENT SUCCESS

• Understand your environment
• Match the process to the environment
• Experiment to improve the process
• Don't attempt to use excessively foreign technology

DOs AND DON'Ts FOR PROJECT
SUCCESS

Develop and adhere to a software
development plan

• Empower project personnel
• Minimize the bureaucracy
• Establish and manage the software

baseline

• Take periodic snapshots of project
health and progress

• Reestimate system size, staff effort,
and schedules regularly

• Define and manage phase transitions
• Foster a team spirit
• Start the project with a small senior

staff

DON'T...

• Allow team members to proceed in
an undisciplined manner

• Set unreasonable goals
• Implement changes without assessing

their impact and obtaining proper approval
• Gold plate
• Overstaff
• Assume that intermediate schedule

slippage can be absorbed later
• Relax standards

• Assume that a large amount of
documentation ensures success

179

Section 10 - Keys to Success

KEYS TO SOFTWARE DEVELOPMENT SUCCESS

The recommended approach to software development, described in

the preceding sections, has been developed and refined over many

years specifically for the flight dynamics environment. The
methodology itself is a product of the SEL's learning experience.
The SEL has found the following to be the keys to success for any

software development organization.

Understand the environment. Before defining or tailoring a

methodology for your project or organization, determine the
nature of the problem, the limits and capabilities of the staff, and

the support software and hardware environment. Collect
baseline measurements of staff effort, system size, development

schedule, source code growth, software changes and errors, and

computer usage.

Match the process to the environment. In planning a project

or defining a standard methodology, use your understanding of

the people, environment, and problem domain to select and tailor
the software process. There must be a match. Be sure that the

elements of the process have a rationale and can be enforced. If

you don't intend to or cannot enforce a standard or a procedure,
do not include it in the plan. Make data collection, analysis, and

reporting integral parts of the development methodology.

Experiment to improve the process. Once a conffortable match

between the process and environment is defined, stretch it, a

little at a time, to improve it continuously. Identify candidate

areas for improvement, experiment with new techniques or

extensions to the process, and measure the impact. Based on a

goal of improving the process and/or product, select candidate
extensions with a high likelihood of success in the environment.

There should always be an expectation that the change will

improve the process. Be careful not to change too many things
at once so that the results from each change can be isolated. Be

aware that not all changes will lead to improvement, so be

prepared to back off at key points.

Don't attempt to use excessively foreign technology.
Although minor improvements to the standard process can be
easily shared from one organization to another, carefully

consider major changes. Do not select and attempt a

significantly different technology just because it was successful
in other situations. The technology, and the risk that

accompanies its adoption, must suit the local environment.

180

=

z.

'1

=

=

!

m

Section 10 - Keys to Success

DOs AND DON'Ts FOR PROJECT SUCCESS

As standard practice, the SEL records lessons learned on successful
and unsuccessful projects. The following DOs and DON'Ts, which

were derived from flight dynamics project experience, are key to

project success.

Nine DOs for Project Success

Develop and adhere to a software development plan. At the

beginning of the project, prepare a software development plan

that sets project goals, specifies the project organization and

responsibilities, and defines the development methodology that
will be used, clearly documenting any deviations from standard

procedures. Include project estimates and their rationale.

Specify intermediate and end products, product completion and
acceptance criteria, and mechanisms for accounting progress.

Identify risks and prepare contingency plans.

Maintain and use the plan as a "living" document. Record

updates to project estimates, risks, and approaches at key
milestones. Provide each team member with the current

software developrnent plan. Periodically, audit the team for

adherence to the plan.

Empower project personnel. People are a project's most

important resource. Allow people to contribute fully to the

project solution. Clearly assign responsibilities and delegate the

authority to make decisions to specific team members. Provide

the team with a precise understanding of project goals and
limitations. Be sure the team understands the development

methodology and standards to be followed on the project.

Explain any deviations from the standard development
methodology to the team.

Minimize the bureaucracy. Establish the minimum

documentation level and meeting schedule necessary to fully

communicate status and decisions among team members and

management. Excessive meetings and paperwork slow progress

without adding value. Don't try to address difficulties by adding
more meetings and management. More meetings plus more

documentation plus more management does not equal more
success.

181

Section 10- Keys to Success

Establish and manage the software baseline. Stabilize

requirements and specifications as early as possible. Keep a
detailed list of all TBD items m classified by severity of impact

in terms of size, cost, and schedule -- and set priorities for their

resolution. Assign appropriate personnel to resolve TBD items;
follow their progress closely to ensure timely resolution.

Estimate and document the impact to costs and schedules of each

specifications change.

Take periodic snapshots of project health and progress,

replanning when necessary. Compare the project's progress,

product, and process measures against the project's plan. Also
compare the current project with similar, past projects and with
measurement models for the organization. Replan when the

management team agrees that there is a significant deviation.

Depending on project goals and limitations, alter the staffing,

schedule, and/or scope of the project. Do not hesitate to reduce

the scope of the work when project parameters dictate.

When the project significantly exceeds defined limits for the
local environment, stop all project activity, audit the project to

determine the true project status, and identify problem areas.
Examine alternatives and devise a recovery plan before

proceeding again.

Reestimate system size, staff effort, and schedules regularly.

As the project progresses, more information is learned about the
size and complexity of the problem. Requirements change, the

composition of the development team changes, and problems

arise. Do not insist on maintaining original estimates. Each

phase of the life cycle provides new and refined information to

improve the estimates and to plan the project more effectively.
There is nothing wrong with realizing that the size has been

underestimated or that the productivity has been overestimated.

It is wrong not to be doing something to detect this and take the

appropriate action. As a rule, system size, effort, and schedule
should be reestimated monthly.

Define and manage phase transitions. Much time can be lost

in the transition from one phase to the next. Several weeks

before the start of each new phase, review progress to date, and

set objectives for the next phase. See that the developers receive

training in the activities of the next phase, and set intermediate

goals for the team. Clarify any changes that have been made to
the development plan. While senior developers are finishing up

the current phase, get junior members of the team started on the

next phase's activities.

'!

182

!

Section 10 - Keys to Success

Foster a team spirit. Projects may include people from different

organizations or companies. Maximize commonality and

minimize differences among project members in all aspects of

organization and management. Clearly define and communicate
the roles of individuals and teams, but provide an overall project

focus. Cross-train as much as possible. Hold combined team

meetings so that everyone gets the same story. Have everyone
follow the same rules. Report progress on a project level as well

as a team level. Struggle through difficulties and celebrate

successes together as a unit, helping and applauding each other

along the way.

Start the project with a small senior staff. A small group of

experienced senior people, who will be team leaders during the
remainder of the project, should be involved from the beginning

to determine the approach to the project, to set priorities and

organize the work, to establish reasonable schedules, and to

prepare the software development plan. Ensure that a plan is in
place before staffing up with junior personnel.

Eight DON'Ts for Project Success

Don't allow team members to proceed in an undisciplined
manner. Developing reliable, high-quality software at low cost

is not a creative art; it is a disciplined application of a set of

defined principles, methods, practices, and techniques. Be sure
the team understands the methodology they are to follow and

how they are to apply it on the project. Provide training in

specific methods and techniques.

Don't set unreasonable goals. Setting unrealistic goals is worse

than not setting any. Likewise, it is unreasonable to hold project

personnel to commitments that have become impossible. Either
of these situations tends to demotivate the team. Work with the

team to set reasonable, yet challenging, intermediate goals and
schedules. Success leads to more success. Setting solid reach-

able goals early in the project u_u',dly leads to continued success.

Don't implement changes without assessing their impact and
obtaining proper approval. Estimate the cost and schedule

impact of each change to requirements and specifications, even if
the project can absorb it. Little changes add up over time. Set

priorities based on budget and schedule constraints. Explore

options with the change originator. In cases where changes or
corrections are proposed during walk-throughs, document the

proposed changes in the minutes but do not implement them

until a formal approved specification modification is received.

183

Section 10 - Keys to Success

Don't "gold plate". Implement only what is required. Often

developers and analysts think of additional "little" capabilities or
changes that would make the system better in their view. Again,
these little items add up over time and can cause a delay in the
schedule. In addition, deviations from the approved design may

not satisfy the requirements.

Don't overstaff, especially early in the project. Bring people

onto the project only when there is productive work for them to
do. A small senior team is best equipped to organize and

determine the direction of the project at the beginning.

However, be careful to provide adequate staff for a thorough

requirements analysis. Early in the project, when there are

mostly 'soft' products (e.g., requirements analysis and design
reports), it is often hard to gauge the depth of understanding of

the team. Be sure the project has enough of the right people to

get off to a good start.

Don't assume that an intermediate schedule slippage can be

absorbed later. Managers and overly optimistic developers tend
to assume that the team will be more productive later on in a

phase. The productivity of the team will not change appreciably
as the project approaches completion of a phase, especially in the

later development phases when the process is more sequential.
Since little can be done to compress the schedule during the later

life cycle phases, adjust the delivery schedule or assign
additional senior personnel to the project as soon as this problem
is detected.

Likewise, don't assume that lat e pieces of design or code will fit
into the system with less integration effort than the other parts of

the system required. The developers' work will not be of higher

quality later in the project than it was earlier.

Don't relax standards in an attempt to reduce costs. Relaxing

standards in an attempt to meet a near-term deadline tends to

lower the quality of intermediate products and leads to more
rework later in the life cycle. It also sends the message to the

team that schedules are more important than quality.

Don't assume that a large amount of documentation ensures
success. Each phase of the life cycle does not necessarily

require a formally produced document to provide a clear starting

point for the next phase. Determine the level of formality and
amount of detail required in the documentation based on the

project size, life cycle duration, and lifetime of the system.

q[

'i

ql

184

=

r

iv

W

=

IT

,7

f

f

x

i

_T

AGSS

ATR

ATRR

BDR

CASE

CCB

CDR

(2M

CMS

COF

CPU

CRF

DBMS

DCL

DEC

DFD

DSF

FCA

FDF

GSFC

lAD

ICD

I/(3
ISPF

IV&V

JCL

KSLOC

LSE

MOI

MOU

NASA

OOD

PC

PCA

PCSF

ACRONYMS

attitude ground support system

Assistant Technical Representative

acceptance tcst readiness review

build design review

computer-aided software engineering

configuration control board

critical design review

configuration management

Code Management System

component origination form

central processing unit

change report form

database managemcnt system

Digital Comm and Language

Digital Equipment Corporation

data flow diagram

development status form

functional configuration audit

Flight Dynamics Facility

Goddard Space Flight Center

interface agrecment document

interface control document

input/output

Interactive System Productivity Facility

independent verification and validation

job control language

thousand source lines of code

language-sensitive editor

memorandum of information

memorandum of understanding

National Aeronautics and Space Administration

object-oriented design

personal computer

physical configuration audit

project completion statistics form

Acronyms

185

PDL
PDR
PEF
PRF
PSRR

Q&A
RE)

RSL

SCR

SDE

SDMP

SEF

SEL

SEN

SFR

SIRD

SLOC

SME

SOC

SORD

SPR

SRR

SSR

STL

STR

STRR

TBD

ACRONYMS (cont.)

program design language (pseudocodc)

preliminary design review

project estimates fo_rn

personnel resources form

preliminary system requirements review

quality assurance

questions and answers

review item disposition

reusable software library

system concept review

Software Dcvelopment Environment

software development/management plan

subjective evaluation lbrm

Software Engineering Laboratory

software engineering notebook

software failure report

support instrumentation requirements document

source lines of code

Software Management Environment

system and operations concept

systems opcrations requirements document

software problem report

system requirements review

software specifications review

Systems Technology Laboratory

software trouble report

system test readincss review

to be determined

,1}

i

=

II

m

186

!

References

REFERENCES

I. Software Engineering Laboratory, SEL-81-104, The Software Engineering Laboratory,
D. N. Card et al., February 1982

2. P.A. Currit, M. Dyer, and H.D. Mills, "Certifying the Reliability of Software, " IEEE
Transactions on Software Engineering, Vol. SE-12, No. 1, January 1986, pp. 3-11

. Software Engineering Laboratory, SEL-90-C02, The Cleanroom Case Study in the Software
Engineering Laboratory. Project Description and Early Analysis, S. Green et al.,
March 1990

4. --, SEL-91-00A, The Software Engineering Laboratory (SEL) Cleanroom Process Model,
S. Green, November 1991

. H.D. Rombach, B.T. Ulery, and J. D. Valctt, "Mcasuremcnt Based Improvement of
Maintenance in the SEL," Proceedings of the Fourteenth Annual Software Engineering
Workshop, SEL-89-007, November 1989

. H.D. Rombach, B.T. Ulery, and J. D. Valctt, "Towards Full Life Cycle Control: Adding
Maintenance Measurement to the SEL," .lournal of Systems and Software; scheduled for

publication in 1992

. F. McGarry and R. Pajerski, "Towards Understanding Software-- 15 Years in the
SEL," Proceedings of the Fifteenth Annual Software Engineering Wor'L_hop, SEL-90-006,
November 1990

. J.W. Bailey and V. R. Basili, "Software Reclamation: Improving Post-Development
Reusability," Proceedings of the Eighth Annual National Conference on Ada Technology,
March 1990. Also published in Collected Software Engineering Papers: Volume VIH,
SEL-90-005, November 1990

. M. Stark, "On Designing Paramctrizcd Systems Using Ada," Proceedings of the Seventh
Washington Ada Symposium, June 1990. Also published in Collected Software Engineering
Papers: Volume VIII, SEL-90-005, November 1990

10. Flight Dynamics Division Code 550, NASA FDD/552-90/083, Extreme Ultraviolet Explorer
(EUVE) Attitude Ground Support System (AGSS) Software Development History,
B. Groveman et al., October 1990

11. G. Booch, Object-Oriented Design (with Applications), Benjamin/Cummings: Redwood

City, CA, 1991

12. Software Engineering Laboratory, SEL-84-101, Manager_ Handbook for Software
Development (Revision 1), L. Landis, F. McGarry, S. Waligora, et al., November 1990

187

References
u

13. E. Yourdon and L. L. Constantine, Structured Design, Yourdon Press: NY, 1978

14. T. DeMarco, Structured Analysis and System Specification, Yourdon, Inc.: NY, 1978

15. P. Ward and S. Mellor, Structured Development for Real-Time Systems, Prentice-Hall:

Englewood Cliffs, NJ, 1985

16. P. Coad and E. Yourdon, Object-OrientedAnalysis, Yourdon Press: NY, 1991

17. Software Engineering Laboratory, SEL-86-002, General Object-Oriented Software
Development, E. Seidewitz and M. Stark, August 1986

18. --,SEL-83-001, An Approach to SoJ'_'are Cost Estimation, F. E. McGarry, G. Page,
D. N. Card, et al., February 1984

19. --,SEL-92-002, Data Collection Procedures jbr the Software Engineering Laboratory (SEL)
Database, G. Heller, J. Valctt, M. Wild, March 1992

20. IBM, Systems Integration Division, TR. 86.00002, A Design Method for Cleanroom
Software Development, M. Dyer, August 1983

21. H. Mills, "Stepwise Refinement and Verification in Box Structured Systems, "IEEE
Computer, June 1988

22. Software Engineering Laboratory, SEL-87-002, Ada Style Guide (Version 1.t),
E. Seidewitz et al., May 1987

23. _, SEL-86-001, Programmer's Handbook for Flight Dynamics Software Development,
R. Wood and E. Edwards, March 1986

24. R.C. Lingen, H. D. Mills, and B. I. Witt, Structured Programming: Theory and Practice,
Addison-Wesley: Reading, Mass., 1979

25. Software Engineering Laboratory, SEL-85-001, A Comparison of Software Verification
Techniques, D. Card, R. Selby, F. McGarry, et al., April 1985

26. m, SEL-85-005, Software Verification and Testing, D. Card, B. Edwards, F. McGarry,
et al., December 1985

27. Flight Dynamics Division Code 550, 552-FDD-92/001R1UD0, Flight Dynamics Software
Development Environment (FD/SDE): SDE Version 4.2.0 User's Guide: Revision 1,
M. Durbeck and V. Hensley, February 1992

I

q

E

188
m

¢.

Bibliography

STANDARD BIBLIOGRAPHY OF SEL LITERATURE

The technical papers, memorandums, and documents listed in this bibliography are organized into

two groups. The first group is composed of documents issued by the Software Engineering Labora-

tory (SEL) during its research and development activities. The second group includes materials that
were published elsewhere but pertain to SEL activities.

SEL-ORIGINATED DOCUMENTS

SEL-76-001, Proceedings From the First Summer Software Engineering Workshop, August 1976

SEL-77-002, Proceedings From the Second Summer Software Engineering Workshop, September
1977

SEL-77-004, A Demonstration of AXES for NAVPAK, M. Hamilton and S. Zeldin, September 1977

SEL-77-005, GSFC NAVPAK Design Specifications Languages Study, P. A. Scheffer and
C. E. Velez, October 1977

SEL-78-005, Proceedings From the Third Summer Software Engineering Workshop, September
1978

SEL-78-006, GSFC Software Engineering Research Requirements Analysis Study, P. A. Scheffer
and C. E. Velez, November 1978

SEL-78-007, Applicability of the Rayleigh Curve to the SEL Environment, T. E. Mapp, December
1978

SEL-78-302, FORTRAN Static Source Code Analyzer Program (SAP) User's Guide (Revision 3),

W. J. Decker, W. A. Taylor, et al., July 1986

SEL-79-002, The Software Engineering Laboratory: Relationship Equations, K. Freburger and

V. R. Basili, May 1979

SEL-79-003, Common Software Module Repository (CSMR) System Description and User's Guide,

C. E. Goorevich, A. L. Green, and S. R. Waligora, August 1979

SEL-79-004, Evaluation of the Caine, Farber, and Gordon Program Design Language (PDL) in the

Goddard Space Flight Center (GSFC) Code 580 Software Design Environment, C. E. Goorevich,

A. L. Green, and W. J. Decker, September 1979

SEL-79-005, Proceedings From the Fourth Summer Software Engineering Workshop, November
1979

SEL-80-002, Multi-Level Expression Design Lan guag e-Requirement Level (MED L-R) System Eval-

uation, W. J. Decker and C. E. Goorevich, May 1980

SEL-80-003, Multimission Modular Spacecraft Ground Support Software System (MMS/GSSS)

State-of-the-Art Computer Systems/Compatibility Study, T. Welden, M. McClellan, and P. Liebertz,

May 1980

SEL-80-005, A Study of the Musa Reliability Model, A. M. Miller, November 1980

SEL-80-006, Proceedings From the Fifth Annual Software Engineering Workshop, November 1980

189

Bibliography

SEL-80-007, An Appraisal of Selected Cost�Resource Estimation Models for Software Systems,
J. F. Cook and F. E. McGarry, December 1980

SEL-80-008, Tutorial on Models and Metrics for Software Management and Engineering,
V. R. Basili, 1980

SEL-81-008, Cost and Reliability Estimation Models (CAREM) User's Guide, J. F. Cook and

E. Edwards, February 1981

SEL-81-009, Software Engineering Laboratory Programmer Workbench Phase 1 Evaluation,
W. J. Decker and E E. McGarry, March 1981

SEL-81-011, Evaluating Software Development by Analysis of Change Data, D. M. Weiss,
November 1981

SEL-81-012, The Rayleigh Curve as a Model for Effort Distribution Over the Life of Medium Scale

Software Systems, G. O. Picasso, December 1981

SEL-81-013, Proceedings of the Sixth Annual Software Engineering Workshop, December 1981

SEL-81-014, Automated Collection of Software Engineering Data in the Software Engineering
Laboratory (SEL), A. L. Green, W. J. Decker, and E E. McGarry, September 1981

SEL-81-101, Guide to Data Collection, V. E. Church, D. N. Card, F. E. McGarry, et al., August
1982

SEL-81-104, The Software Engineering Laboratory, D. N. Card, F. E. McGarry, G. Page, et al.,

February 1982

SEL-81-107, Software Engineering Laboratory (SEL) Compendium of Tools (Revision 1),

W. J. Decker, W. A. Taylor, E. J. Smith, et al., February 1982

SEL-81-110, Evaluation of an Independent Verification and Validation (IV&V) Methodology for

Flight Dynamics, G. Page, E E. McGarry, and D. N. Card, June 1985

SEL-81-305, Recommended Approach to Software Development (Revision 3), L. Landis, E E.

McGarry, S. Waligora, et al., June 1992

SEL-82-001, Evaluation of Management Measures of Software Development, G. Page, D. N. Card,

and F. E. McGarry, September 1982, vols. 1 and 2

SEL-82-004, Collected Software Engineering Papers: Volume 1, July 1982

SEL-82-007, Proceedings of the Seventh Annual Software Engineering Workshop, December 1982

SEL-82-008, Evaluating Software Development by Analysis of Changes: The Data From the Soft-

ware Engineering Laboratory, V. R. Basili and D. M. Weiss, December 1982

$EL-82-102, FORTRAN Static Source Code Analyzer Program (SAP) System Description (Revi-

sion 1), W. A. Taylor and W. J. Decker, April 1985

SEL-82-105, Glossary of Software Engineering Laboratory Terms, T. A. Babst, M. G. Rohleder,

and F. E. McGarry, October 1983

190

II

Blbllography

SEL-82-1006, Annotated Bibliography of Software Engineering Laboratory Literature,
L. Morusiewicz and J. Valett, November 1991

SEL-83-001, An Approach to Software Cost Estimation, F. E. McGarry, G. Page, D. N. Card, et al.,

February 1984

SEL-83-002, Measures and Metrics for Software Development, D. N. Card, E E. McGarry,

G. Page, et al., March 1984

SEL-83-003, Collected Software Engineering Papers: Volume H, November 1983

SEL-83-006, Monitoring Software Development Through Dynamic Variables, C. W. Doerflinger,
November 1983

SEL-83-007, Proceedings of the Eighth Annual Software Engineering Workshop, November 1983

SEL-83-106, Monitoring Software Development Through Dynamic Variables (Revision 1),

C. W. Doerflinger, November 1989

SEL-84-003, Investigation of Specification Measures for the Software Engineering Laboratory
(SEL), W. W. Agresti, V. E. Church, and E E. McGarry, December 1984

SEL-84-004, Proceedings of the Ninth Annual Software Engineering Workshop, November 1984

SEL-84-101, Manager's Handbook for Software Development (Revision 1), L. Landis,
F. E. McGarry, S. Waligora, et al., November 1990

SEL-85-001, A Comparison of Software Verification Techniques, D. N. Card, R. W. Selby, Jr.,

E E. McGarry, et al., April 1985

SEL-85-002, Ada Training Evaluation and Recommendations From the Gamma Ray Observatory
Ada Development Team, R. Murphy and M. Stark, October 1985

SEL-85-003, Collected Software Engineering Papers: Volume III, November 1985

SEL-85-004, Evaluations of Software Technologies: Testing, CLEANROOM, and Metrics,

R. W. Selby, Jr., and V. R. Basili, May 1985

SEL-85-005, Software Verification and Testing, D. N. Card, E. Edwards, F. McGarry, and C. Antic,
December 1985

SEL-85-006, Proceedings of the Tenth Annual Software Engineering Workshop, December 1985

SEL-86-001, Programmer's Handbook for Flight Dynamics Software Development, R. Wood and
E. Edwards, March 1986

SEL-86-002, General Object-Oriented Software Development, E. Seidewitz and M. Stark, August
1986

SEL-86-003, Flight Dynamics System Software Development Environment (FDS/SDE) Tutorial,
J. Buell and P. Myers, July 1986

SEL-86-004, Collected Software Engineering Papers: Volume IV, November 1986

SEL-86-005, Measuring Software Design, D. N. Card et al., November 1986

191

Bibliography

SEL-86-006, Proceedings of the Eleventh Annual Software Engineering Workshop, December 1986

SEL-87-001, Product Assurance Policies and Procedures for Flight Dynamics Software Develop-

ment, S. Perry et al., March 1987

SEL-87-002, Ada Style Guide (Version 1.1), E. Seidewitz et al., May 1987

SEL-87-003, Guidelines for Applying the Composite Specification Model (CSM), W. W. Agresti,
June 1987

SEL-87-004, Assessing the Ada Design Process and Its Implications: A Case Study, S. Godfrey,

C. Brophy, et al., July 1987

SEL-87-009, Collected Software Engineering Papers: Volume V, November 1987

SEL-87-010, Proceedings of the Twelfth Annual Software Engineering Workshop, December 1987

SEL-88-001, System Testing of a Production Ada Project: The GRODY Study, J. Seigle, L. Esker,

and Y. Shi, November 1988

SEL-88-002, Collected Software Engineering Papers: Volume VI, November 1988

SEL-88-003, Evolution of Ada Technology in the Flight Dynamics Area: Design Phase Analysis,

K. Quimby and L. Esker, December 1988

SEL-88-004, Proceedings of the Thirteenth Annual Software Engineering Workshop, November
1988

SEL-88-005, Proceedings of the First NASA Ada User's Symposium, December 1988

SEL-89-002, Implementation of a Production Ada Project: The GRODY Study, S. Godfrey and

C. Brophy, September 1989

SEL-89-003, Software Management Environment (SME) Concepts and Architecture, W. Decker and

J. Valett, August 1989

SEL-89-004, Evolution of Ada Technology in the Flight Dynamics Area: Implementation�Testing

Phase Analysis, K. Quimby, L. Esker, L. Smith, M. Stark, and F. McGarry, November 1989

SEL-89-005, Lessons Learned in the Transition to Ada From FORTRAN at NASA/Goddard,

C. Brophy, November 1989

SEL-89-006, Collected Software Engineering Papers: Volume VII, November 1989

SEL-89-007, Proceedings of the Fourteenth Annual Software Engineering Workshop, November

1989

SEL-89-008, Proceedings of the Second NASA Ada Users' Symposium, November 1989

SEL-89-101, Software Engineering Laboratory (SEL) Database Organization and User's Guide
(Revision 1), M. So, G. Heller, S. Steinberg, K. Pumphrey, and D. Spiegel, February 1990

SEL-90-001, Database Access Manager for the Software Engineering Laboratory (DAMSEL)

User's Guide, M. Buhler, K. Pumphrey, and D. Spiegel, March 1990

ql

i

m

!

iii

192

Bibliography

SEL-90-002, The Cleanroom Case Study in the Software Engineering Laboratory: Project Descrip-

tion and Early Analysis, S. Green et al., March 1990

SEL-90-003, A Study of the Portability of an Ada System in the Software Engineering Laboratory

(SEL), L. O. Jun and S. R. Valett, June 1990

SEL-90-004, Gamma Ray Observatory Dynamics Simulator in Ada (GRODY) Experiment Sum-

mary, T. McDermott and M. Stark, September 1990

SEL-90-005, Collected Software Engineering Papers: Volume VIII, November 1990

SEL-90-006, Proceedings of the FifteenthAnnual Software Engineering Workshop, November 1990

SEL-91-001, Software Engineering Laboratory (SEL) Relationships, Models, and Management

Rules, W. Decker, R. Hendrick, and J. Valett, February 1991

SEL-91-003, Software Engineering Laboratory (SEL) Ada Performance Study Report, E. W. Booth
and M. E. Stark, July 1991

SEL-91-004, Software Engineering Laboratory (SEL) Cleanroom Process Model, S. Green,
November 1991

SEL-91-005, Collected Software Engineering Papers: Volume IX, November 1991

SEL-91-006, Proceedings of the Sixteenth Annual Software Engineering Workshop, December
1991

SEL-91-102, Software Engineering Laboratory (SEL) Data and Information Policy (Revision 1),

E McGarry, August 1991

SEL-92-001, Software Management Environment (SME) Installation Guide, D. Kistler, January
1992

SEL-92-002, Data Collection Procedures for the Software Engineering Laboratory (SEL) Data-
base, G. Heller, March 1992

SEL-RELATED LITERATURE

4Agresti, W. W., V. E. Church, D. N. Card, and P. L. Lo, "Designing With Ada for Satellite Simula-

tion: A Case Study," Proceedings of the First International Symposium on Ada for the NASA Space
Station, June 1986

2Agresti, W. W., E E. McGarry, D. N. Card, et al., "Measuring Software Technology," Program

Transformation and Programming Environments. New York: Springer-Verlag, 1984

1Bailey, J. W., and V. R. Basili, "A Meta-Model for Software Development Resource Expenditures,"

Proceedings ofthe Fifth lnternational Conference on Software Engineering. New York: IEEE Com-

puter Society Press, 1981

8Bailey, J. W., and V. R. Basili, "Software Reclamation: Improving Post-Development Reusability,"

Proceedings of the Eighth Annual National Conference on Ada Technology, March 1990

1Basili, V. R., "Models and Metrics for Software Management and Engineering," ASME Advances

in Computer Technology, January 1980, vol. 1

193

Bibliography

Basili, V. R., Tutorial on Models and Metrics for Software Management and Engineering.

New York: IEEE Computer Society Press, 1980 (also designated SEL-80-008)

3I_asili, V. R., "Quantitative Evaluation of Software Methodology," Proceedings of the First Pan-

Pacific Computer Conference, September 1985

7Basili, V. R., Maintenance = Reuse-Oriented Software Development, University of Maryland,

Technical Report TR-2244, May 1989

7Basili, V. R., Software Development: A Paradigm for the Future, University of Maryland, Tech-

nical Report TR-2263, June 1989

8Basili, V. R., "Viewing Maintenance of Reuse-Oriented Software Development," IEEE Software,

January 1990

1Basili, V. R., and J. Beane, "Can the Parr Curve Help With Manpower Distribution and Resource

Estimation Problems?," Journal of Systems and Software, February 1981, vol. 2, no. 1

9Basili, V. R., and G. Caldiera, A Reference Architecture for the Component Factory, University of

Maryland, Technical Report TR-2607, March 1991

1Basili, V. R., and K. Freburger, "Programming Measurement and Estimation in the Software Engi-

neering Laboratory," Journal of Systems and Software, February 1981, vol. 2, no. 1

3Basili, V. R., and N. M. Panlilio-Yap, "Finding Relationships Between Effort and Other Variables

in the SEL,'" Proceedings of the International Computer Software and Applications Conference, Oc-
tober 1985

4Basili, V. R., and D. Patnaik, A Study on Fault Prediction and Reliability Assessment in the SEL

Environment, University of Maryland, Technical Report TR-1699, August 1986

2Basili, V. R., and B. T. Perricone, "Software Errors and Complexity: An Empirical Investigation,"

Communications of the ACM, January 1984, vol. 27, no. 1

1Basili, V. R., and T. Phillips, "Evaluating and Comparing Software Metrics in the Software Engi-

neering Laboratory," Proceedings of the ACM SIGMETRICS Symposium�Workshop: Quality
Metrics, March 1981

3Basili, V. R., and C. L. Ramsey, "ARROWSMITH-PmA Prototype Expert System for Software

Engineering Management," Proceedings of the IEEEIMITRE Expert Systems in Government Sympo-
sium, October 1985

Basili, V. R., and J. Ramsey, Structural Coverage of Functional Testing, University of Maryland,

Technical Report TR-1442, September 1984

Basili, V. R., and R. Reiter, "Evaluating Automatable Measures for Software Development,"

Proceedings of the Workshop on Quantitative Software Models for Reliability, Complexity, and Cost.

New York: IEEE Computer Society Press, 1979

5Basili, V. R., and H. D. Rombach, "Tailoring the Software Process to Project Goals and Environ-

ments," Proceedings of the 9th International Conference on Software Engineering, March 1987

5Basili, V. R., and H. D. Rombach, "T A M E: Tailoring an Ada Measurement Environment,"

Proceedings of the Joint Ada Conference, March 1987

194

!

II

Bibliography

5Basili, V. R., and H. D. Rombach, "1" A M E: Integrating Measurement Into Software Environ-

ments," University of Maryland, Technical Report TR-1764, Iune 1987

6Basili, V. R., and H. D. Rombach, "The TAME Project: Towards Improvement-Oriented Software

Environments," IEEE Transactions on Software Engineering, June 1988

7Basili, V. R., and H. D. Rombach, Towards A Comprehensive Framework for Reuse." A Reuse-

Enabling Software Evolution Environment, University of Maryland, Technical Report TR-2158,
December 1988

8Basili, V. R., and H. D. Rombach, TowardsA Comprehensive Framework for Reuse." Model-Based

Reuse Characterization Schemes, University of Maryland, Technical Report TR-2446, April 1990

9Basili, V. R., and H. D. Rombach, Support for Comprehensive Reuse, University of Maryland,

Technical Report TR-2606, February 1991

3Basili, V. R., and R. W. Selby, Jr., "Calculation and Use of an Environment's Characteristic Soft-

ware Metric Set," Proceedings of the Eighth International Conference on Software Engineering.

New York: IEEE Computer Society Press, 1985

Basili, V. R., and R. W. Selby, Jr., Comparing the Effectiveness of Software Testing Strategies, Uni-

versity of Maryland, Technical Report TR-1501,May 1985

3Basili, V. R., and R. W. Selby, Jr., "Four Applications of a Software Data Collection and Analysis

Methodology," Proceedings of the NATO Advanced Study Institute, August 1985

5Basili, V. R., and R. Selby, "Comparing the Effectiveness of Software Testing Strategies," IEEE

Transactions on Software Engineering, December 1987

9Basili, V. R., and R. W. Selby, "Paradigms for Experimentation and Empirical Studies in Software

Engineering," Reliability Engineering and System Safety, January 1991

4Basili, V. R., R. W. Selby, Jr., and D. H. Hutcbens, "Experimentation in Software Engineering,"

IEEE Transactions on Software Engineering, July 1986

2Basili, V. R., R. W. Selby, and T. Phillips, "'Metric Analysis and Data Validation Across FORTRAN

Projects," IEEE Transactions on Software Engineerfng, November 1983

2Basili, V. R., and D. M. Weiss, A Methodology for Collecting Valid Software Engineering Data,

University of Maryland, Technical Report TR-1235, December 1982

3Basili, V. R., and D. M. Weiss, "A Methodology for Collecting Valid Software Engineering Data,"

IEEE Transactions on Software Engineering, November 1984

1Basili, V. R., and M. V. Zelkowitz, "The Software Engineering Laboratory: Objectives,"

Proceedings of the Fifteenth Annual Conference on Computer Personnel Research, August 1977

Basili, V. R., and M. V. Zelkowitz, "Designing a Software Measurement Experiment," Proceedings
of the Software Life Cycle Management Workshop, September 1977

1Basili, V. R., and M. V. Zelkowitz, "Operation of the Software Engineering Laboratory," Proceed-

ings of the Second Software Life Cycle Management Workshop, August 1978

195

Bibliography

1Basili, V. R., and M. V. Zelkowitz, "Measuring Software Development Characteristics in the Local

Environment," Computers and Structures, August 1978, vol. 10

Basili, V. R., and M. V. Zelkowitz, "Analyzing Medium Scale Software Development," Proceedings

oftheThirdInternationalConferenceonSoftwareEngineering. NewYork: IEEE Computer Society
Press, 1978

9Booth, E. W., and M. E. Stark, "Designing Configurable Software: COMPASS Implementation

Concepts," Proceedings of Tri-Ada 1991, October 1991

9Briand, L. C., V. R. Basili, and W. M. Thomas,A Pattern Recognition Approach for Software Engi-

neering Data Analysis, University of Maryland, Technical Report TR-2672, May 1991

5Brophy, C. E., W. W. Agresti, and V. R. Basili, "Lessons Learned in Use of Ada-Oriented Design

Methods," Proceedings of the Joint Ada Conference, March 1987

6Brophy, C. E., S. Godfrey, W. W. Agresti, and V. R. Basili, "Lessons Learned in the Implementation

Phase of a Large Ada Project," Proceedings of the Washington Ada Technical Conference, March
1988

2Card, D. N., "Early Estimation of Resource Expenditures and Program Size," Computer Sciences

Corporation, Technical Memorandum, June 1982

2Card, D. N., "Comparison of Regression Modeling Techniques for Resource Estimation," Com-

puter Sciences Corporation, Technical Memorandum, November 1982

3Card, D. N., "A Software Technology Evaluation Program," Annais do XVIII Congresso Nacional

de lnformatica, October 1985

5Card, D. N., and W. W. Agresti, "Resolving the Software Science Anomaly," The Journal of

Systems and Software, i987

6Card, D. N., and W. W. Agresti, "Measuring Software Design Complexity," The Journal of Systems

and Software, June 1988

4Card, D. N., V. E. Church, and W. W. Agresti, "An Empirical Study of Software Design Practices,"

IEEE Transactions on Software Engineering, February 1986

Card, D. N., V. E. Church, W. W. Agresti, and Q. L. Jordan, "A Software Engineering View of Flight

Dynamics Analysis System," Parts I and II, Computer Sciences Corporation, Technical Memoran-
dum, February 1984

Card, D. N., Q. L. Jordan, and V. E. Church, "Characteristics of FORTRAN Modules," Computer

Sciences Corporation, Technical Memorandum, June 1984

5Card, D. N., F. E. McGarry, and G. T. Page, "Evaluating Software Engineering Technologies,"

IEEE Transactions on Software Engineering, July 1987

3Card, D. N., G. T. Page, and F. E. McGarry, "Criteria for Software Modularization," Proceedings

of the Eighth International Conference on Software Engineering. New York: IEEE Computer

Society Press, 1985

1Chert, E., and M. V. Zelkowitz, "Use of Cluster Analysis To Evaluate Software Engineering Meth-

odologies," Proceedings of the Fifth International Conference on Software Engineering. New York:

IEEE Computer Society Press, 1981

196

Bibliography

4Church, V. E., D. N. Card, W. W. Agresti, and Q. L. Jordan, "An Approach for Assessing Software

Prototypes," ACM Software Engineering Notes, July 1986

2Doerflinger, C. W., and V. R. Basili, "Monitoring Software Development Through Dynamic Vari-

ables," Proceedings of the Seventh International Computer Software and Applications Conference.
New York: IEEE Computer Society Press, 1983

Doubleday, D., ASAP : An Ada Static Source Code Analyzer Program, University of Maryland, Tech-
nical Report TR-1895, August 1987 (NOTE: 100 pages long)

6Godfrey, S., and C. Brophy, "Experiences in the Implementation of a Large Ada Project," Proceed-

ings of the 1988 Washington Ada Symposium, June 1988

Hamilton, M., and S. Zeldin, A Demonstration of AXES for NAVPAK, Higher Order Software, Inc.,

TR-9, September 1977 (also designated SEL-77-005)

5jeffery, D. R., and V. Basili, Characterizing Resource Data." A Model for Logical Association of

Software Data, University of Maryland, Technical Report TR-1848, May 1987

6jeffery, D. R., and V. R. Basili, "Validating the TAME Resource Data Model," Proceedings of the

Tenth International Conference on Software Engineering, April 1988

5Mark, L., and H. D. Rombach, A Meta Information Base for Software Engineering, University of

Maryland, Technical Report TR-1765, July 1987

6Mark, L., and H. D. Rombach, "Generating Customized Software Engineering Information Bases

From Software Process and Product Specifications," Proceedings of the 22nd Annual Hawaii In-
ternational Conference on System Sciences, January 1989

5McGarry, F. E., and W. W. Agresti, "Measuring Ada for Software Development in the Software En-

gineering Laboratory (SEL)," Proceedings of the 21st Ann ual Hawaii International Conference on
System Sciences, January 1988

7McGarry, E, L. Esker, and K. Qnimby, "Evolution of Ada Technology in a Production Software

Environment," Proceedings of the Sixth Washington Ada Symposium (WADAS), June 1989

3McGarry, F. E., J. Valett, and D. Hail, "Measuring the Impact of Computer Resource Quality on the

Software Development Process and Product," Proceedings of the Hawaiian International Confer-

ence on System Sciences, January 1985

National Aeronautics and Space Administration (NASA), NASA Software Research Technology

Workshop (Proceedings), March 1980

3page, G., F. E. McGarry, and D. N. Card, "A Practical Experience With Independent Verification

and Validation," Proceedings of the Eighth International Computer Software and Applications Con-

ference, November 1984

5Ramsey, C. L., and V. R. Basili, An Evaluation of Expert Systems for Software Engineering

Management, University of Maryland, Technical Report TR-1708, September 1986

3Ramsey, J., and V. R. Basili, "Analyzing the Test Process Using Structural Coverage," Proceedings

of the Eighth International Conference on Software Engineering. New York: IEEE Computer
Society Press, 1985

197

Bibliography

5Rombach, H. D., "A Controlled Experiment on the Impact of Software Structure on Maintain-

ability," IEEE Transactions on Software Engineering, March 1987

8Rombach, H. D., "Design Measurement: Some Lessons Learned," IEEE Software, March 1990

9Rombach, H. D., "Software Reuse: A Key to the Maintenance Problem," Butterworth Journal of

Information and Software Technology, January/February 1991

6Rombach, H. D., and V. R. Basili, "Quantitative Assessment of Maintenance: An Industrial Case

Study," Proceedings From the Conference on Software Maintenance, September 1987

6Rombach, H. D., and L. Mark, "Software Process and Product Specifications: A Basis for Gener-

ating Customized SE Information Bases," Proceedings of the 22nd Annual Hawaii International

Conference on System Sciences, January 1989

7Rombach, H. D., and B. T. Ulery, Establishing a Measurement Based Maintenance Improvement

Program: Lessons Learned in the SEL, University of Maryland, Technical Report TR-2252, May
1989

6Seidewitz, E., "Object-Oriented Programming in SmaUtalk and Ada," Proceedings of the 1987

Conference on Object-Oriented Programming Systems, Languages, and Applications, October 1987

5Seidewitz, E., "General Object-Oriented Software Development: Background and Experience,"

Proceedings of the 21st Hawaii International Conference on System Sciences, January 1988

6Seidewitz, E., "General Object-Oriented Software Development with Ada: A Life Cycle Ap-

proach," Proceedings of the CASE Technology Conference, April 1988

9Seidewitz, E., "Object-Oriented Programming Through Type Extension in Ada 9X," Ada Letters,

March/April 1991

4Seidewitz, E., and M. Stark, '`Towards a General Object-Oriented Software Development Method-

ology," Proceedings of the First International Symposium on Ada for the NASA Space Station, June
1986

9Seidewitz, E., and M. Stark, "An Object-Oriented Approach to Parameterized Software in Ada,"

Proceedings of the Eighth Washington Ada Symposium, June 1991

8Stark, M., "On Designing Parametrized Systems Using Ada," Proceedings of the Seventh

Washington Ada Symposium, June 1990

7Stark, M. E. and E. W. Booth, "Using Ada to Maximize Verbatim Software Reuse," Proceedings

of TRI-Ada 1989, October 1989

5Stark, M., and E. Seidewitz, "Towards a General Object-Oriented Ada Lifecycle," Proceedings of

the Joint Ada Conference, March 1987

8Straub, P. A., and M. V. Zelkowitz, "PUC: A Functional Specification Language for Ada," Pro-

ceedings of the Tenth International Conference of the Chilean Computer Science Society, luly 1990

7Sunazuka, T., and V. R. Basili, Integrating Automated Support for a Software Management Cycle

Into the TAME System, University of Maryland, Technical Report TR-2289, July 1989

198

Bibliography

Turner, C., and G. Caron, A Comparison of RADC and NASA/SEL Software Development Data,

Data and Analysis Center for Software, Special Publication, May 1981

Turner, C., G. Caron, and G. Brement, NASA/SEL Data Compendium, Data and Analysis Center for

Software, Special Publication, April 1981

5Valett, J. D., and E E. McGarry, "A Summary of Software Measurement Experiences in the Soft-

ware Engineering Laboratory," Proceedings of the 2 l st Ann ual Hawaii International Conference on
System Sciences, January 1988

3Weiss, D. M., and V. R. Basili, "Evaluating Software Development by Analysis of Changes: Some

Data From the Software Engineering Laboratory," IEEE Transactions on Software Engineering,

February 1985

5Wu, L., V. R. Basili, and K. Reed, "A Structure Coverage Tool for Ada Software Systems,"

Proceedings of the Joint Ada Conference, March 1987

1Zelkowitz, M. V., "Resource Estimation for Medium-Scale Software Projects," Proceedings of the

Twelfth Conference on the Interface of Statistics and Computer Science. New York: IEEE Computer

Society Press, 1979

2Zelkowitz, M. V., "Data Collection and Evaluation for Experimental Computer Science Research,"

Empirical Foundations for Computer and Information Science (Proceedings), November 1982

6Zelkowitz, M. V., "The Effectiveness of Software Prototyping: A Case Study," Proceedings of the

26th Annual Technical Symposium of the Washington, D. C., Chapter of the ACM, lune 1987

6Zelkowitz, M. V., "Resource Utilization During Software Development," Journal of Systems and

Software, 1988

8Zelkowitz, M. V., "Evolution Towards Specifications Environment: Experiences With Syntax

Editors," Information and Software Technology, April 1990

Zelkowitz, M. V., and V. R. Basili, "Operational Aspects of a Software Measurement Facility,"

Proceedings of the Software Life Cycle Management Workshop, September 1977

199

Bibliography

NOTES:

1This article also appears in SEL-82-004, Collected Software Engineering Papers: Volume I, July
1982.

2This article also appears in SEL-83-003, Collected Software Engineering Papers: Volume II,
November 1983.

3This article also appears in SEL-85-003, Collected Software Engineering Papers: Volume III,
November 1985.

4This article also appears in SEL-86-004, Collected Software Engineering Papers: Volume lg,
November 1986.

5This article also appears in SEL-87-009, Collected Software Engineering Papers: Volume V,
November 1987.

6This article also appears in SEL-88-002, Collected Software Engineering Papers: Volume VI,
November 1988.

7This article also appears in SEL-89-006, Collected Software Engineering Papers: Volume VII,
November 1989.

8This article also appears in SEL-90-005, Collected Software Engineering Papers: Volume VIII,
November 1990.

9This article also appears in SEL-91-005, Collected Software Engineering Papers: Volume IX,
November 1991.

200

Index

INDEX

A

Ada 15, 72

compilation 124
CPU time and 97

design 73

Fig. 5-4 73

detailed design phase and 93
environment 93, 95

implementation phase and 95

libraries 95

LSE 95

package specifications 68, 74, 89, 93

PDL 74, 89, 93, 97

SEL environment and 2

specifications 68

style 95

testing and 120

Analysis

code 70, 76, 77, 91

domain 15

object-oriented see OOD

report see under Documents

requirements see under Requirements

structured 22, 28, 44

development team and 7, 42

tools 49, 70, 76, 91, I39

Analysts
notecard 7

acceptance test team 10, 86, 162

communication and 64, 66, 69

notecard 27

management team and 45

requirements analysis phase 47

requirements definition team 27, 64, 66
reuse and 7

reviews and 12, 75, 80, 133

system test team 115, 137

Analyzers

cede

source 124

static 77, 147, 170

FORTRAN SAP 123

RXVP80 123

VAX SCA 77, 123

performance 147, 170

Problem Program Evaluator 77

TSA/PPE (Boole & Babbage) 123,141

VAX Performance and Coverage Analyzer

123, 141

Application specialists 30
notecard 27

acceptance testing phase and 143

change approval and i22

code reading 119

development team 90, 93, 108, 110, 137,

150

documentation and 108, 110

implementation phase and 110

inspection team 93

reviews and 120, 121

system test team 115, 137

testing and 121,149

Audits, configuration 143, 146, 157, 176

FCA (functional configuration audit) 146

PCA (physical configuration audit) 146

B

Baseline

builds and 123

configuration management tools and 123

diagrams 71

libraries and 123

requirements and specifications document and

8, 27, 39, 45

201

Index

Baseline continued

SDMP and 54

SEL 19

SEN and 74

specific environment and 180, 182

Boole & Babbage see TSA/PPE, under Analyzers

Builds 11, 12, 90, 99, 101, 111
activities of 110

baselines for 123

changes to 114, 116, 124, 130

development team and 121
documentation and 69

estimates and estimation 114, 127

implementation phase

Fig. 7-1 109

life-cycle phases and

Fig. 7-2 110
load module 113

errors 172

final 176

librarian and 140, 168

libraries and 153

test report forms and 147

testing see under Testing

plan see plan, build, under Documentation

programmers and 108

reviews of 108, ! 13, 115, 132

notecard 12

see also BDR, under Reviews

schedule 103, 132

SEN and 122

system testing phase 152

test bed 120

test plan see under plan, under Documents

testing see under Testing

C

CASE (computer-aided software engineering) 49,

123

SEL environment and 2, 123

CAT see under Libraries (for software)

CCB (configuration control board) 49,153

CDR and 102

PDR and 80

SRR and 39

Central processing unit see CPU

Change report form see under Forms

Clcanroom methodology 19

notecard 19

SEL environment and 2

see also Phase Highlights tables at beginnings

of sections

_MS (Code Management System) 122, 145

Code

Ada PDL 93

analysis see under Analysis

analyzers see Analyzers

configuration management and 123

detailed design phase 86

estimates and estimation 127

executable 77

experience and 76

libraries 69, 115

reading 110, 117, 120, 126, 141

application specialists and 119
SEL 117

reviews

Fig. 7-4 118

scaffolding see drivers, under Prototypes and

prototyping
source 108

configuration management and 122

libraries 122, 127, 129, 145, 146

measure 124, 127

standards 90

unit 111

det'med notecard 8

Code Management System see CMS

COF see under Forms

Components 70, 71
dermed notecard 8

FDF environment and 71

origination form (COb-') see under Forms

reuse of see under Reuse

reviews 92

see also Reviews

SEL and 71

SEN and 74

Computer-aided software engineering see CASE

Configuration

Analysis Tool see CAT, under Libraries

audits see Audits, configuration

control board see CCB

management 13, 69, 74, 90, 115, 116, 122,

170

acceptance test team and 144

COF and 121,126

202

'1

!

!

i

=

!t

Index

Configuration continued
CRF and 128

implementation phase 115

implementation team and 13

management team and 142

SEN and 95, 122

source code and 122

system test team and 139

system testing phase 136, 145
tools 123

CPU (central processing unit) 45

time 77, 96, 97, 98, 125, 127, 150, 173

CRF see under Forms

Criteria

acceptance 10, 26, 181

requirements and specifications document

and 32

entry 61

notecard 7

see also Phase Highlights tables at

beginnings of sections

evaluation

acceptance testing phase 172, 173

detailed design phase 96

implementation phase 126

preliminary design phase 77

prototyping and 58

requirements analysis phase 52

requirements definition phase 31

system testing phase 150
exit

notecard 7

acceptance testing phase 177

detailed design phase 105

implementation phase 133

preliminary design phase 69, 82

requirements analysis phase 61

requirements definition phase 39

system testing phase 159

see also Phase Highlights tables at

beginnings of sections
review 12, 93

SSR 12

test 26

Critical design review see CDR, under Reviews

Customer

delivery to 10

needs and reviews 12, 69, 108, 114, 133,

140, 146, 149, 155

prototypes and 14

requirements definition and 6, 114, 137

requirements definition team managers and 27

technical representative 13, 35,108

D

Dan Bricklin's Demo Program 50

Data

Table 4-1 51

abstraction of 71

collection of 1, 51, 77, 139, 150, 180

Table 5-1 77

forms for 18

dictionary 46

externally visible 72

flow 77

Fig. 5-1 64

historical 44, 45, 52

page fault 77

requirements analysis process 42

structures 76

test 139, 140, 144, 155

Database

project histories 18

SEL 2, 120

specialist 119

Debuggers 123, 147

Decomposition, functional 28, 70, 71

Design

approaches and 64

detailed phase see under Phase

deviations from 184

documentation of

see Diagrams, Documents

inspections see Inspections

object-oriented see OOD

preliminary

review of see PDR, under Reviews

preliminary phase see under Phase

requirements and specifications document and

58

reuse and 15, 141

Developers

acceptance testing phase and 143
ATRR and 157

CMS and 123

COFand 120, 122

communication and 90, 92, 129

203

Index

Developers continued
notecard 27

configuration audits and 143

CRF and 122, 128

design phases and 16

errors and 9, 64

estimates and estimation and 77

"gold-plating" habit of 184

implementation phase 9, 17
measures and 18

methods and tools of 70, 71, 73, 74, 95, 123,

124

overly optimistic 184

PDL and 74, 95

practice runs and 144

preliminary design phase 64

proiogs and 74, 95

prototypes and prototyping 76

requirements analysis phase 47

requirements definition team and 7, 69
reuse and 7, 27, 32, 76

reviews and 12, 64, 80, 82, 108, 117, 119

SEN and 74, 89, 95, 122, 146

SOC and 32

STL 93

testing and 119, 120, 121,129, 132, 145,

153

training of 182

walk-throughs and 75, 87

Diagrams, design 64, 66, 68, 70, 71, 74, 75, 86,

89, 91, 93, 95, 105, 141

OOD and 66

Dictionary, data 46

Discrepancies see under Forms
Documents

checklists

code inspection 117, 118

code reading 120

design inspection 74, 76, 89, 93, 95

Fig. 6-3 94

SEN and 117, 146

test review 120, 121, 147, 153, 176

configuration management and 13

detailed design 8, 68, 80, 86, 89, 91, 98, 99,

102, 105, 108, 113

generating Fig. 6-1 87

system description and 113

user's guide and 113

developers and 32

204

forms see Forms

plan

acceptance test 10, 91,116, 129, 144

Fig. 7-8 130
contents of 142, 155, 157

exit criteria and 159

requirements and specifications

document and 10, 155

system testing phase and 153

analytical test 91, Ill, 116, 119, 129,

132, 137, 167

contents of 132

exit criteria and 159

build 69, 89, 90, 102, 108, 113, 115

contents of 99, 101

management team and 98, 99

preliminary 99

build test

Fig. 7-8 130

development team and 101,108,

I11, 121, 129

exit criteria and 133

load module and 113

regression tests and 108, 130

development 46, 102, 181,183

changes to 182

implementation 9

integration test 120

management see SDMP, hereunder

phase 14, 27

prototyping 54, 58

reuse 32, 54, 68, 76

updates to 66

system test 9, 137, 144, 149, 153, 167
contents of 130, 131

execution of 132

exit criteria and 134, 159

generating 9, 108, 110, 113
libraries and 122

management team and 115

requirements and specifications
document and 9

small projects and 13

test 89, 98, 122

Fig. 7-8 131
FCA and 146

reuse and 15

unit 117, 119

=

|

!
l

i

i

w

11

i

L

i

see also name of specific document,
hereunder

prototyping and 14

quality assurance and 13

report

audit 147

detailed test 166, 168

discrepancy see under Forms

preliminary acceptance test 166

preliminary design 8, 64, 68, 70, 80, 82,
99

addenda to 80

contents of 80

Fig. 5-5 81

updates to 68

requirements analysis 7, 45, 46, 50, 184
contents of 54

Fig. 4-4 54
distribution of 61

SSR and 59

summary 147

test report forms see under Forms

requirements and specifications

acceptance test plan and 10, 142, 155

baseline of requirements 39

clarity of 52, 79
classification of items 44

contents of 7, 32

Fig. 3-4 34

development team and 7, 44, 71
errors and 149

exit criteria and 39

generating 182

Fig. 3-2 24
libraries and 50

preliminary design phase and 64

requirements analysis phase and 42, 47,
54

requirements definition phase and 32

requirements definition team and 42
reuse and 45

SOC and 22

SRR and 36, 42

system test plan and 9, 146

updates to 8, 39, 44, 47, 49, 58

reuse and 15

SCR and 35

SDMP (software development/management

plan) 45, 50, 54, 69

Index

Fig. 4-5 52
notecard 11

contents 55

Fig. 4-5 56
IV&V and 149

managers as authors 55

prototypes and 58

updates to 99, 114

SEN (software engineering notebook) 74
audits and 146

baseline 74

configuration management 95, 122

contents of 74, 89, 95, 117, 120

detailed design phase and 91

developers and 89, 95

exit criteria and 134

implementation phase and 116, 122

libraries 74, 122, 146

preliminary design phase and 70

updates to 95, 141,146, 168

SIRD (system instrumentation requirements

documen0 22, 48

small projects and 13

SOC (system and operations concept

documen0 32, 45

generating Fig. 3-1 23

requirements and specifications and 22

requirements definition phase and 32

reuse proposal included 25

updates to 32, 45

software development history 68, 89, 114,
142

SORD (system operations requirements

documen0 22, 48

structure charts see Diagrams, design

system description 9, 108, 137, 146

audits and 146

contents of 155

Fig. 8-7 156

detailed design document and 113
exit criteria and 159

final version of 10, 141

system testing phase and 153 i

tools to produce diagrams for 29

user's guide 9
audits and 146

contents of 153

Fig. 8-6 154

detailed design document and 113

205

Index

Documents continued

draft of 9, 108, 113, 115, 122, 129, 134,

153

exit criteria and 159

final version of 10, 141,168, 176, 177

system testing phase and 137, 153

Domain analysis see Analysis, domain

E

Editor see LSE

Entry criteria see Criteria, entry
Environments

acceptance testing 157
Ada 93

constraints of 61,180

CPU use and 127

development team and 101

VDF 1, 52, 71, 72, 96, 122, 124, 149, 180

analysts and 137

analytical test plans in 132
SDE 124

SEL 120, 123

Fig. 1-1 1

STL 1,124

test 115, 137, 139, 147

transfer among 124, 142, 180

understanding 180

Estimates and estimation 53

code 127

cost 25, 45, 46, 52, 54, 56, 114, 142

documentation of 181

effort see staff, hereunder

measures and 77, 79, 96, 124

Table 6-1 97

performance 44

performance modeling and 77

requirements 30, 31

reuse 51, 97, 150

schedule 46, 51, 52, 54, 56, 150

specification modifications and 79, 96, 182,
183

staff 31, 51, 52, 56, 58, 150

notecard 10

system 51, 52, 53, 56, 58, 97, 150

updates to 79

TBD requirements and 52, 54, 61

unstable requirements and

Fig. 6-4 98

updates to 68, 69, 79, 96, 114, 127, 181,

182

Exit criteria see Criteria, exit

F

FCA see under Audits, configuration

FDF (Flight Dynamics Facility) 1
RSL 76

see also under Environment

Forms

COF (component origination form) 120, 126

CRF (change report form) 122, 145

developers and 128
librarian and 122

data collection 18

discrepancy report 122, 140, 147, 169, 170

acceptance test team and 163

closure of 149

development team and 163,167, 168

exit criteria and 159

management team and 149
SEL model 152

system test team and 149

PCSF (project completion statistics form)
173

requirements question-and-answer 47, 48, 50,

78, 92, 96, 124, 143, 150

RID (review item disposition form) 45, 58

notecard 37

CDR and 89, 105

exit criteria and 39, 61, 82, 105

PDR and 68, 80

requirements definition team and 70, 91

SRR and 39

SEF (subjective evaluation form) 173

test report 121,147

FORTRAN

FDF environment and 71

PDL 68, 74

preliminary and detailed design phases and

Fig. 5-3 72

prologs 68, 74

see also SAP, under Analyzers

G

H

206

Index

Images, executable see load module, under Builds

Implementation phase see under Phase

Inspections 29, 133

design 92

Interactive System Productivity Facility see ISPF

Interfaces 8, 25, 26

Ada and 72, 74

detailed design phase 92

errors 74, 117

exit criteria and 39, 105

implementation phase 108, 111

inspection team and 76

OOD and 71, 72

PDR and 80

preliminary design phase 8, 64, 66, 68, 70,

71, 75

requirements analysis phase 49
reuse and 16, 77

smaller projects 35

TBD requirements and 52, 78
user 101,119

detailed design phase 92

ISPF (Interactive System Productivity Facility)
124

Items

review 32, 37, 48

see also RID, under Forms

test 165

evaluation of 17|, 172

reports and 166, 167

IV&V (independent verification and validation)

149

J

K

L

Language-sensitive editor see LSE

Libraries

(for documents)
contents of 74

program library manager 95

project 50, 122

contents of 89, 95, 122

development team and 113

exit criteria and 134

version control 123

SEN and 122, 146

(for software) 115, 122, 142, 145, 169

CAT (Configuration Analysis Tool) 123,
124

CDR and 90

changes to 122, 140, 168, 170

compilation systems and 124

contents of 69, 129, 153

control of 142, 145

documentation and 143, 146

exit criteria and 133

measures and 127, 128

PANEXEC 124

PANVALET 123, 124

system delivery and 176
tools for 122, 123, 124

usage as measure 124, 126

development team and 89

librarian 50, 89, 122

COF and 121,122

CRF and 122

executable images and 121

load module and 113

SEN and 95

management team and 69, 90

reuse and 16

RSL 76, 89, 124, 141

Life cycle, software development
activities of 5

builds see Builds

estimates and estimation and 182

measures of see Measures

milestones notecard 7

phases of 5, 51
see also Phases

Recent SEL paper on notecard 3
releases see Releases

reuse and 15, 16

Fig. 2-2 15

reviews see Reviews

SDMP and 55

notecard 11

tailoring 11, 169

notecard 12, 25

see also Phase Highlights tables at beginnings

of sections

207

Load module see under Builds

LSE (language-sensitive editor) 95
PDL and 74

VAX 123

IV!

Me.asures

acceptance testing phase 169, 173

Table 9-1,173

detailed design phase 96, 124

Table 6-1 97

recording of 114

developers responsible for 18

estimates and estimation as 79

implementation phase 114, 124, 126
Table 7-1 125

library usage as 126, 127

life-cycle phases and 17

Fig. 2-3 18

preliminary design phase 77, 96

Table 5-1 78

project histories database 18

requirements analysis phase 50, 77

Table 4-1 51

requirements definition phase 30
Table 3-1 31

SEL 19, 126, 128

Fig. 2-3 18
notecard 3

Table 2-1 18

software development history and 169

source code as 127

system testing phase 142, 150

Table 8-1 151

see also Phase Highlights tables at beginnings

of sections

Methods 28, 47

acceptance testing phase 170

development plan and 181

discipline and 183

elements of 180

environment and 180

integration testing 120

prototype assessment 58

see also Analysis

see also name of particular method; Phase

Highlights tables at beginnings of sections

Metrics see Measures

208

Mills, Harlan 19

Models and modeling

performance 77

SEL discrepancy status Fig. 8-5 152

SEL error 175

Modules

configuration management and 95
defined notecard 8

implementation of 114

integration of 108, 110, 111,120

load see under Builds

management system see under V AX
SEL 120

SEN and 95, 122

stubs 120

testing of 110, 111,120

O

OOD (object-oriented design) 8, 15, 28, 42, 44,

49, 64
Ada and 72

design diagrams and 66, 91

detailed design phase and 87, 91

implementation phase and 113

PDL and 68

preliminary design phase and 70, 71, 73, 74

proiogs and 68

SEL environment and 2

P

PANEXEC sbe under Libraries (for software)

PANVALET see under Libraries (for software)

PCA see under Audits, configuration

PCSF see under Forms

PDL (program design language)

Ada 74, 93, 97

coding statements and 111

development team and 68, 89
documentation of 80, 86, 95, 98, 119

evaluation criteria and 77

exit criteria and 82, 105

FORTRAN 74

implementation phase and 74

management team and 69

methodsandtools70,91
qualityassuranceand117
reviewsof 75, 93

SEL and 74

PDR see under Reviews

Phase

Note that exit criteria of one phase are the

entry criteria of the next phase; see also Phase

Highlights tables at beginnings of sections

acceptance testing

acceptance test plan and 155

entry criteria 159

evaluation criteria 171,172, 173

exit criteria 177

flow diagram Fig. 9-1 163

products 176

transition to 143

detailed design
Ada and 93

design diagrams and 71,86

entry criteria 82
evaluation criteria 96

exit criteria 105

flow diagram Fig. 6-1 87

formalisms produced during 8
FORTRAN and

Fig.5-3 72

key activities 86, 89

Fig. 6-2 88

measures of 96, 114

methods and tools 91, 92

OOD and 91

package bodies and 73

preliminary design report and 68

products 86, 101,108

reuse analysis and 96

TBD requirements and 52, 96

transition to 69, 86

walk-throughs 92

implementation 9

configuration management and 115
CPU time and 127

detailed design document and 8

documentation and 141,144,153

entry criteria 105
estimates and estimation and 127

evaluation criteria 126

exit criteria 9, 133

flow diagram Fig. 7-1 109

Index

key activities 110

Fig. 7-3 112

lessons learned 142

libraries and 127

measures of 114, 124

Table 7-1 125

methods and tools 116, 147

PDL and 74

products 108, 122, 129, 132

prologs and 74

TBD requirements and 115

transition to 70, 105, 108

maintenance and operations 10
notecard 10

changes deferred to 143

phase not specifically addressed in this

document 10

reuse and 17

preliminary design
Ada and 72

diagram of Ada systems Fig. 5-4 73

entry criteria 61

evaluation criteria 77

exit criteria 69, 82

flow diagram Fig. 5-1 65

key activities 66
lessons learned 89

measures of 77, 96

Table 5-1 78

methods and tools 70

products 71, 80, 99

Fig. 5-5 81

requirements analysis report and 54

requirements and specifications document

and 64

TBD requirements and 52, 66
transition to 46

requirements analysis 42, 44, 46, 64, 184

entry criteria 39
evaluation criteria 52

exit criteria 61

flow diagram Fig. 4-1 43

key activities 44

Fig. 4-2 46

lessons learned 68

measures of 50, 77

methods and tools of 47

products 46, 54

prototypes and prototyping and 45

2O9

Index

Phase continued

reuse analysis and 45

walk-throughs 42, 44, 45, 47

requirements clef'tuition 22
evaluation criteria 31

exit criteria 39

flow diagram Fig. 3-1 23

key activities 25

measures of 30

Table 3-1 30

methods and tools 28

products 26, 27, 32

prototyping and 30

reuse analysis and 16

walk-throughs 30

system testing

acceptance test plan and 155

analytical test plan and 136

entry criteria 133

evaluation criteria 150

exit criteria 137, 159

flow diagram Fig. 8-1 136

key activities 137
measures of 142, 150

Table 8-1 151

evaluation of 150

methods and tools 144

products 153

purpose of 136

requirements and specifications document
and 146, 149

reuse and 141

system test plan and 136

TBD requirements and 150, 155

user's guide and 137

Plans see under Documents

PPE 0_roblem Program Evaluator) 77

Preliminary design review see PDR, under
Reviews

Preliminary system requirements review see

PSSR, under Reviews

Products

acceptance testing phase 176

detailed design phase 86, 98

diagrams 86

development plan and 181,182
exit criteria and 105, 134

implementation phase 129, 144

intermediate 26, 99, 157, 181,184

210

libraries and 16

preliminary design phase 64, 69, 71, 80

Fig. 5-5 81

prototyping plan see under Documents

quality assurance and 13, 29, 69, 90, 115

requirements analysis phase 54

requirements definition phase 32
reuse 15

review 27, 42, 46, 92

soft 184

system testing phase 153

tailoring and 11

see also names of specific products; Phase

Highlights tables at beginnings of sections

Program library manager see under Libraries

Programmers
builds and 108

CASE and 123

LSE and 123

Prologs 68

Ada see package specifications, under Ada

development team and 89

documentation of 80, 86, 95, 98

evaluation criteria and 77

exit criteria and 82, 105

FORTRAN 68, 74

implementation pha_ and 74

LSE and 95

management team and 69
methods and tools 70, 91

reviews of 75, 93

SEL and 74

Prototypes and prototyping 14, 45, 69
customer and 14

detailed design phase and 87, 91, 97

documentation of 14, 58

see also plan, under Documents

drivers 68, 71, 74, 76, 120, 123

evaluation 58

flight dynamics environment and 14

guidelines for notecards 14

implementation phase and 120

interface 49

objective of 58

plan see under plan, under Documents

preliminary design phase and 64, 66, 76, 80

requirements analysis phase and 49

requirements definition phase and 30

SDMP and 58

Index

PSRR see under Reviews

Q

Quality assurance 13, 69, 74, 80, 90, 93, 102,

115, 142, 143, 165, 169

documents and 141

R

Regression testing see under Testing

Releases 11, 12, 126

changes deferred to 143, 159

documentation of 99, 101,108, 129

implementation of 109

life-cycle phases and

Fig. 7-2 110

Reports see under DocumenLs

Requirements

analysis phase see under Phase

audits and 143

changes to 143, 159, 182, 183

Fig. 6-4 98
BDR and 126

CDR and 102

communication of 90, 114

CPU time and 127

detailed design phase and 89, 96

implementation phase and 114, 116
measures and 128

preliminary design phase and 79

classification of 44, 47

customer and 22, 155

definition of 22

methods and tools for 28

definition phase see under Phase

discrepancy and 149

generalization of 15

misinterpreted 175

review of system see SRR, under Reviews

TBD (to-be-determined) 52, 77, 99

BDR and 126

classification of 52

defmed 48

detailed design phase and 96

development team and 44, 47

estimation of risk 54, 61

exit criteria and 39, 61,105

interfaces and 52, 78

management team and 45

measure 51,124

PDR and 80

preliminary design phase and 78

requirements analysis and 42

requirements analysis report and 54

requirements definition 7

requirements definition team and 44, 86,
90

resolution of 52, 64, 69, 70, 86, 90, 96,

115, 155

smaller projects 12

total requirements and 31

testing and 136, 162
total 31

Requirements definition of 31

Requirements definition phase see under Phase

Reusable Software Library see RSL, under
Libraries

Reuse

acceptance test phase and 173

activities enabling 15

Fig. 2-2 15

analysis and verification 16, 66, 70, 76, 80,
91

see also candidate software, hereunder

applications speciaiists and notecard 27

candidate software 16, 22, 64, 66, 76, 82, 89,

96, 141

current projects and 16

design and 15, 16, 66

developers and 17

documentation and 15, 32, 45, 66, 68, 76

estimates and estimation 77, 79, 96, 97, 124

key elements of notecard 15

libraries 16, 69

life cycle and 15, 16

Fig. 2-2 15

performance analyzers and 77

pitfalls notecard 25

preliminary design phase and 76

preservation techniques 17

prototypes and prototyping and 76

requirements analysis and design phases and 7

specifications and 15

verbatim or with modifications 17

Reviews

BDR (build design review) 108, 113, 115,
132

211

Index

Reviews continued

build test plan and 129

format of

Fig. 7-9 133

hardcopy materials for

Fig. 7-10 134

requirements definition team and 116

TBD requirements and 126

CDR (critical design review) 102

conduct of 8, 86, 89, 90, 113

exit criteria and 105

format

Fig. 6-6 103

hardcopy materials for 99, 104

implementation phase and 108
libraries and 90

project size and 12

prototypes and prototyping and 89

requirements definition team and 48, 91

RIDs and 89, 105

TBD requirements and 126

test plan and 101, 113

criteria for 12, 93

format and contents recommended notecard 12

PDR (preliminary design review) 8, 64, 69

CDR and 102

detailed design phase and 86

exit criteria and 80, 82

format of

Fig. 5-6 82

hardcopy materials for

Fig. 5-7 83

preliminary design phase and 80

requirements definition team and 70
RIDs and 68

tool development and 12

product see under Product

PSRR (preliminary system requirements

review) 45

notecard 26, 37

SCR (system concept review) 7, 22, 35

Fig. 3-1 22
customer and 35

format of Fig. 3-5 35

hardcopy materials for Fig. 3-6 36

SRR (system requirements review) 7, 36, 42,

45

notecard 37

conduct of Fig. 3-7 37

212

exit criteria and 39

generating

Fig.3-2 23

hardcopy materials for Fig. 3-8 38

requirements and specifications document

and 32, 36

small projects and 12

SSR (software specifications review) 7, 59
conduct of 42, 44, 45, 59

Fig. 4-6 59
criteria for 12

hardcopy materials for 46

Fig. 4-7 59

scheduling 46

STRR (system test readiness review) 115

tailoring the life cycle and 12

RID see under Forms

Rombach, Dieter notecard 3

RSL see under Libraries

S

SAP see under Analyzers

SCA see under Analyzers

SCR see under Reviews

SDE see under FDF, under Environment

SDMP see under Documents

SEF see under Forms

SEL (Software Engineering Laboratory) 50, 71,

74, 117, 120

baseline developed by 19, 170

checklist for code readers Fig: 7-4 118

COF and 120

CRF 122

database 120

environment 123

Fig. 1-1 1
error rate model 175

evaluation forms 177

experiments in 19, 150

Fig. 8-5 152

history of 1

keys to success 180
lessons learned 181

measures 126, 128

models and modeling Fig. 8-57 152

system description recommended by 155

SOC see under Documents

Software
configurationmanagersee librarian, under

Libraries

development/management plan (SDMP) see

SDMP, under Documents

specifications review see SSR, under Reviews

Software Engineering Laboratory see SEL

Software Through Hctures 29

Source Code Analyzer Program see under

Analyzers

Specifications

completed 31

reuse and 15

review of see SSR, under Reviews

SRR see under Reviews

SSR see under Reviews

Staff hours see under Estimates and estimation

STL (Systems Technology Laboratory) I

Structure charts see Diagrams, design
Stubs see under Modules

System

concept review see SCR, under Reviews

description document see under Documents
instrumentation

requirements document see SIRD, under
Documents

operations concept document see SOC, under

Documents

requirements review see SRR, under Reviews

requirements see Requirements

test plan see plan, under Documents

test see Testing, system

System Architect 29

System concept review see SCR, under Reviews

Systems Technology Laboratory see STL

T

Tailoring see under Life cycle

TBD see under Requirements

Teams

acceptance test 9, 10, 111

acceptance test plan and 162

analytical test plan and 119, 132

assumption of responsibility 168

ATRR and 137, 155, 157

composition of 86, 162

demonstrations and 143, 144, 157

Index

development team and 144, 162, 163,

165, 167

documentation and 129, 144, 155, 172

implementation phase and 108

key activities 91, 116, 137, 144, 162,
165

test evaluation and 171

training of 168

communication among 42, 45, 64, 90, 113,

114, 116, 167, 169

development 7, 8, 45, 49, 52

acceptance test plan and 116

acceptance test team and 141,142, 162,

165, 167, 168

acceptance testing and 10, 162, 163

analytical test plan and 91, 116, 129,

132

application specialists on 108, 110, 137

ATRR and 141,142

BDR and 108, 116, 132

build test plan and 101,108, 129
build tests and 121,127

builds and 99

CASE and 49

CDR and 102

composition of 68, 114

configuration management and 69, 136
demonstrations and 157

detailed design phase and 86

discrepancy reports and 149

documentation and 8, 10, 46, 47, 49, 50,

108, 115, 129, 137, 141, 153,

155

error correction and 172

exit criteria and 82, 105

inspection team and 75, 93

integration testing and 120

key activities 66, 86, 110, 111, 137,

141, 162, 167

librarian 50

methods and 49

PDL and 93

PDR and 8, 80

preliminary design phase and 61, 64, 68

products 98

prototypes and prototyping and 49, 76,
97

quality assurance and 69

question-and-answer forms and 48

213

In_de_w_

Teams continued

requirements analysis phase and 42, 44,
47

requirements and specifications document
and 47

requirements changes and 122
SDMP and .54

SSR and 46, 59

system test plan and 108

system test team and 136, 141

testing and 9, 126

training of 68

walk-throughs and 75, 86, 92

functional decomposition and 91

implementation

configuration management and 13

large projects and 13

inspection 76

composition of 75, 93

design inspections and 93
maintenance 17

management 45

acceptance test team and 143

acceptance testing and 163
audits and 146, 147

builds and 89, 99, 108, 121

communication and 181,183

composition of 68, 69, 163

configuration management and 69, 142

customer and 27

deve!opment team and 68, 142, 169

discrepancies and 150

documentation and 115, 173, 177

exit criteria and 105, 159, 177

IV&V and 149

key activities 68, 89, 114, 137, 142, 168

libraries and 69

products 98

quality assurance and 69, 173

requirements changes and 96, 98, 116,
142, 182

system evaluation and 150

system test plan and 130

system test team and 142

TBD requirements and 96

testing and 120, 153

membership notecard 22

OOD and 91

operations concept 6

requirements definition 7, 8, 27, 45, 48, 49,

66

baselined requirements and 8

CDR and 102

detailed design phase and 86

documentation and 42, 49, 58, 155

exit criteria and 39

key activities 66, 90, 115
PDR and 80

preliminary design phase and 64

question-and-answer forms and 48

requirements analysis phase and 42, 44,
47

requirements changes and 114

requirements definition phase and 22

requirements question-and-answer forms
and 92

SRR and 39, 42, 44

SSR and 58

walk-throughs and 75, 86, 87, 92

system test 115, 136

analysts on 115, 137

application specialists on 115

composition of 115, 137

development team and 136

discrepancy reports and 149
documentation and 153

exit criteria and 134

key activities 137

system test plan and 130

testing and 153

see also Phase Highlights tables at beginnings

of sections

Testing 74

acceptance 86, 115, 123, 127, 128

completion of 10, 162

flow diagram Fig. 9-1 163

purpose of 162
releases and 12

see also under Phase

acceptance plan see plan, under Documents

build 101, 108, Ili, 113, 116, 121, 127,

129, 130, 171

development team and 9
drivers 120

integration

Fig. 7-5 121

load module 145, 146, 165, 166, 167, 168,

171, 172

214

Index

module II0,III, 116,120

planseeplan,under Documents

regression

build 108,121

buildtestplanand 130

small projects and 13

system 115, 123, 126, 127, 128, 129, 130,
134

completion of 9

test plan see under Documents
seealsounderPhase

unit 77,95, 108,II0, Ill, I14, 116,119,

126, 128

Tools 28, 47, 49,70, 166

librariesand 50

seealsoPhase Highlightstablesatbeginnings

ofsections

TSA/PPE (Boole& Babbage)seeunderAnalyzers

U

Ulery, B. notecard 3
Units

cenwal processing see CPU
correction of 122

defined notecard 8

TBD requirements in 52

see also Testing

UseYs guide see under Documents

V

Valett, Jon notecard 3

VAX see name of particular product
Verification

exit criteria and 133

independent and validation see IV&V
reusesee under Reuse

unit 117

W

Walk-throughs 29

Walk-throughs see also under name of phase, under
Phase

X

Y

Z

215

lJJ' I II • _ n,lJ_

i

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering

and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of

information, lndudtng suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suits

1204, Arlington, VA 22202-4302, and to the Office of ,X/lana_lemant and Bud_let, Paperwork Reduction Project {0704-0188), Washin_on. DC 20503.

4.

1. AGENCY USE ONLY (Leave b_ank) 2. REPORT DATE
/ June 1992

TITLE AND SUBTITLE

Recommended Approach to Software Development

e. AUTHOR(S)

3. REPORT TYPE AND DATES COVERED

Technical Report

5. FUNDING NUMBERS

SEL 81-305

7,

9o

Linda Landis, Sharon Waligora, Frank McGarry, Rose Pajerski, Mike Startk, Kevin

O. Johnson, Donna Cover

PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

NASA, Greenbelt, MD 20771

Univ. of MD, College Park, MD 20742

Computer Sciences Corp.

SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

NASA/SEL, Greenbelt, MD 20771

8. PERFORMING ORGANIZATION
REPORT NUMBER

CR189300

10. SPONSOR_TORING
AGENCY REPORT NUMBER

SEL 82-305

11. SUPPLEMENTARY NOTES

12a.. DI_TRIBUTI. QN/A.VAJI_#..BILITY STATEMENT
u nc_ass]t_exl-U nllm _ted

Subject Category

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximwn 200words)

This document presents guidelines for an organized, disciplined approach to software development that is based on studies

conducted by the Software Engineering Laboratory (SEL) since 1976. It describes methods and practices for each phase

of a software development life cycle that starts with requirements definition and ends with acceptance testing. For each

defined life cycle phase, this document presents guidelines for the development process and its management, and for the

products produced and their reviews.

This document is a major revision of SEL-81-205.

14. SUBJECT TERMS

Requirements Definition, Requirements Analysis, Preliminary Design, Detailed Design,

Implementation, System Testing, Acceptance Testing, Maintenance & Operation

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

NSN 7540-01-280-5500

18. SECURITY CLASSIRCATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

App. 200

16. PRICE CODE

20. LIMITATION OF ABSTRACT

Unlimited

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18, 298-102

